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What is LUMASS? 
LUMASS is a Land Use MAnagement Support System and is designed to provide support for two high 
level aspects of land management: i) land use impact assessment and ii) spatial planning. The former 
aspect is supported by LUMASS’ spatial system dynamics modelling framework, whereas the latter is 
supported by LUMASS’ spatial optimisation component (s. SpatialOptimisationHowTo.pdf).  

LUMASS is mainly focused on processing and displaying raster data. However, it also provides 
selected functionality of displaying (polygon) vector data and 3D point clouds. Spatial optimisation 
scenarios can also be run on polygon vector layers.  

Graphical User Interface (GUI) 

 

Figure 1 LUMASS graphical user interface 

1. Map View: 2D/3D Display area for raster and vector layers as well as for point clouds 
2. Model View: Visual modelling environment 
3. Map Layers: Table of contents and legend configuration for layers displayed in the map view  
4. Table Objects: Table of contents for stand-alone tables (s. Table view) 
5. Model Components: List of available model process components in the modelling environment 
6. Layer Attributes: List of map layer attribute values for a given point in the map (view) 
7. Component Properties: Properties of a given model component 
8. Table View: Table display and processing interface 
9. Menu Bar & Tool Bar 

https://bitbucket.org/landcareresearch/lumass/downloads/OptimisationHowTo_1.1.zip
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10. Notification Area: (not shown in Fig. 1) displays information, warning, and error messages 
related to processing and modelling tasks 

 
      1        2      3        4         5        6         7       8       9      10       11     12     13     14                      15 

Figure 2 LUMASS tool bar 

1. Zoom in map/model view 
2. Zoom out map/model view 
3. Zoom to map/model content 
4. Pan map/model 
5. Select features/components 
6. Clear selection (features / components) 
7. Link model components 
8. Reset model 
9. Stop model execution 
10. Execute model 
11. Display/hide map view 
12. Display/hide model view 
13. Stack main views horizontally 
14. Stack main views vertically 
15. Find/zoom to model component (by model component name or UserID) 

LUMASS provides a typical desktop user interface that embraces the use of drag & drop and context 
menus. So, if you want to accomplish a certain task and are in doubt of how to do it, try drag and & 
drop, e.g. to import a table, image, or model into the respective view areas. If you want to perform 
an action on a particular object, double check whether it provides a context menu (right click) 
offering object specific actions (e.g. map layer, table column, model component). 

The user interface can be adjusted to best suit the current task at hand (i.e. mapping, or modelling). 
For example, the main views (Figs. 1-1, 1-2) can be individually hidden and displayed (Figs. 2-11, 2-
12) adjusted in their size (by using their separating slider), or stacked vertically or horizontally (Figs. 
2-13, 2-14). The display areas left and right of the main views (Fig. 1, Layers & Components 

and Attributes and Properties), as well as the not displayed Notifications area are 
dockable windows and can be arbitrarily positioned around the centred main views or float on top of 
the main user interface. Layer attribute tables and stand-alone tables (Fig. 1-8) are displayed in their 
own top level window independent of the main user interface.    

The individual content and property display areas (Figs. 1-3 to 1-7) can be collapsed and unfolded 

individually by clicking on their respective title button showing their name (e.g. Table Objects, 
Fig. 1-4). The View menu provides the view modes Map View Mode and Model View Mode, 
which configure the associated display areas for mapping and modelling tasks respectively.  

Map display 

Layer types 
LUMASS supports the display of three different types of spatial layers:  

 Raster (2D image) (multi-band and attribute table support) 

 Vector (polygon only) 

 Point cloud (3D) (experimental) 
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Data formats 
The supported data formats for raster and vector layers are largely defined by the supported 
formats of the underlying GDAL library used for import and export of 2D raster and vector layers. 
Additionally, LUMASS supports the internally used VTK PolyData format (*.vtk) for vector layers. On 
Linux and if compiled with rasdaman support, LUMASS also provides a direct interface to the 
rasdaman array database for reading and writing multi-dimensional image data (including WCS 
metadata). Note that LUMASS provides experimental support for processing 3D images using the 
spatial modelling framework. Point cloud data may be provided as simple ASCII file, containing the 
comma separated x,y,z coordinates of a single point on an individual line. Please note that 3D 
mapping (and processing) functionality is still very much in development.  

How to map raster layer values 
0. In this example we map a multi-band raster layer without attribute table. It can be easily applied 

to single band raster layers without attribute tables as well.  

1. Navigate to the LUMASS SampleData/data folder: Use your favourite filesystem browser to 

do this (i.e. Windows File Explorer, Dolphin, Nautilus, etc.). 

2. Load the layer: Select the LUMASS_icon_2048.kea file and drag it into the Map Layers 
or Map View area 

3. Toggle layer visibility: To toggle the layer’s visibility, click on the coloured tile icon left of the 
layer name.  

4. Select the layer: Select the layer by left clicking its layer name. The layer name should now be 
highlighted in blue. Note that left clicking a selected layer de-selects it. 

5. Observe mouse pointer position, pixel values and image resolution: Move the mouse pointer 
over the map (i.e. the LUMASS logo) and watch the information displayed in the status bar (Fig. 
3) at the very bottom of the GUI.  

 

Figure 3 LUMASS status bar information 

It displays from left to right the  

a. location of the mouse pointer in map coordinates 

b. (0-based) pixel index of the currently displayed image pyramid layer (i.e. reduced resolution 
image) of the image, and the  

c. pixel value under the mouse pointer 

Note: In case of a multi-band image, LUMASS displays three bands of the given image as RGB colour 
image and displays the corresponding values in the status bar as RGB tuple. 

d. the (0-based) pixel index of the largest possible region 

6. Alter displayed image resolution by zooming in and out: Use the mouse wheel or the zoom tool 
to zoom in or out. Watch the display at the bottom and the displayed pixel index. When the 
displayed pixel index and the largest possible pixel index are identical, the image is displayed in 
its maximum resolution. 

7. View image layer metadata: Select the layer name in the Map Layers section (Fig. 1-3). Open 
the context menu (right click on layer name) and select Show Image Information 

http://gdal.org/
http://rasdaman.org/
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Figure 4 Image information 

8. Display the layer legend: Double click on the layer name to display the legend. In case of a multi-
band image, LUMASS maps three of the available bands to represent the colours red, green, and 
blue respectively.  

9. Change the band assignment: Double click on any of the RGB colour items in the legend and 
assign a different band to the given colour. 

10. Map the value range of an individual band: Open the context menu of the layer (right click) and 
select Map Band Value Range. This maps the entire value range of the selected band 
according to a given colour ramp. It is useful for multi-band images that don’t represent colour 
values but, for example, a time series of an environmental variable, such as temperature. 

11. Adjust the value range mapping: Double click on the band name (Band #1) above the 
displayed colour ramp to display the legend administration settings.  

 

Figure 5 Layer legend for a value range map; items displayed in blue font define the layer 
legend administration settings 
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e. Change the mapped band: Double click on the Value Field entry and select a different 

band or select RGB to return to the RGB mapping mode. 
f. Change the value range: Double click on the Upper and Lower entries respectively to 

adjust the mapped value range to 100 to 150. Image Values below 100 are now rendered in 
black (i.e. the < Lower colour) and image values greater than 150 are now rendered in 
green (i.e. the > Upper colour). The image values in the range from 100 to 150 are 
linearly mapped against the selected colour ramp.  

g. Change the colour ramp and upper and lower colour: Double click on the Colour Ramp 
entry in the legend administration settings and select a different colour ramp. To change the 
colours used to display values outside the specified range of 100 to 150, double click the 
> Upper or < Lower colour items respectively and select a new colour from the colour 
dialog. Note that you can also change the alpha channel value for those colours. For 

example, setting the alpha channel value to 0, renders any selected colour transparent. 

How to map raster layer attributes 
0. In this example we focus on the mapping of a raster layer with an associated attribute table.  

1. Navigate to the LUMASS SampleData/data folder: Use your favourite filesystem browser to 

do this (i.e. Windows File Explorer, Dolphin, Nautilus, etc.).  

2. Load the layer: Select the logo_rat.img file and drag it into the Map Layers or Map 

View area respectively.  

Note that this layer was created from the LUMASS_icon_2048.kea layer using the 

CreateLogoWithRAT.lmx LUMASS model in the LUMASS SampleData/models folder. It extracts 

the first band (model component ExtractBand) from the image and then uses the model component 

SumZones to create an attribute table for the image. SumZones treats each set of pixel that share the 
same (integer) pixel value as an individual zone and creates and attribute table entry (i.e. table record) for 
it. 

3. Display the layer legend: Double click on the layer name to unfold the legend. 

Note: Categorical raster layers are displayed by default with a Unique Value legend and the mapped 

attribute defaults to the first integer value attribute (here: zone_id). The colours are randomly assigned 
to each category. 

4. Change the colour of individual (zone_id) categories: Double click on the category ‘0’ and 

select an alpha channel value of 0 and click OK. This renders the logo background transparent.  

5. Save a unique value legend: To save your individually configured unique value legend, right click 
on the layer name and select Save Legend …  

Note: The legend is saved as simple comma separated text file (*.csv) and assigns red, green, blue, and 
alpha values to each individual category value defined for the given attribute. However, the top row of the 
legend table assigns a particular colour value (the default is white) for image values which are not 
explicitly defined in the legend table (i.e. nodata colour). The legend can be loaded to colour arbitrary 

attributes (Layer Context Menu | Load Legend …) as long as they are displayed as unique value map. 
Also note that once you have loaded a particular legend file (i.e. unique value colour legend), this legend 
gets reapplied as long as you only change the attribute to be mapped (s. below) and not the legend type 
(e.g. to value range mapping). 

6. Map a different (integer) attribute: You can change the current attribute being mapped by 

either i) using the layer context menu option Map Unique Values … or by ii) double clicking 
the Value Field entry in the layer legend administration settings (Fig. 5). Use option i) to change 

the mapped attribute to rowidx.  
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7. Map the value range of a layer attribute: To change the legend type, right click the layer name 

to open its context menu and select Map Value Range … This maps the currently selected 
layer attribute using a colour ramp across the attribute’s value range from minimum to 
maximum.  

a. Display the layer legend administration settings.  
b. Double click on the Value Field item and select the attribute count from the drop 

down list 

Note: When you move the mouse pointer over the map (don’t forget to select the layer), the pixel values 

now displayed in the status bar represent the mapped attribute values of the currently configured Value 

Field attribute (here: the number pixel in each category). 

8. Display all attribute values for a given point (pixel) in the map:  

a. Select the layer name in the Map Layers display area (Fig. 1-3) 
b. Move the mouse pointer over the map and click with the left mouse button in the displayed 

map.  

This opens the Layer Attributes display area (Fig. 1-6). It shows a list of all layer attributes 
and their values for the given point.  

9. Map the value range of the actual pixel values: Double click on the Value Field item and 
select Pixel Values from the drop down list. 

Note: Categorical maps use the actual pixel values stored in the image file to reference particular records 
in the associated attribute table. In the previous steps (2 to 7) this relationship is used to present a spatial 

map of the values stored in the attribute table. The Pixel Values option enables the mapping of the 
actual pixel values stored in the image. When you change to pixel values, it might be necessary to re-

adjust the value range (i.e. Upper and Lower values). If you don’t know the appropriate value range, you 

can use the layer’s context menu options Visible Pixel Statistics or Whole Image 

Statistics to find out the minimum and maximum of the actual pixel values.  

10. Display a summary statistic of a layer attribute: Map the value range of a layer attribute (s. step 
7). Now, right click the layer name to open the context menu and select Value Field 

Statistics.  

Note: The value field statistic refers to the currently configured Value Field attribute and is derived 
from the values stored in the attribute table for this attribute.  

Tables  
LUMASS supports two types of tables: i) attribute tables for vector and raster layers and ii) stand-
alone tables.  

Attribute Tables 
Raster and vector attribute tables are loaded automatically whenever a raster or vector layer is 

displayed in the Map View (Fig. 1-1). To view an attribute table, select Open Attribute Table 
from the layer’s context menu. Click on the column headers (left mouse button) to sort the table or 
open the table’s context menu using the right mouse button. Depending on whether you are viewing 
a raster or vector attribute table, LUMASS provides different capabilities especially with regard to 
querying and processing the table data. Since raster attribute tables are stored in a SQLite database, 
they provide a richer set of querying and processing options than vector attribute tables.  
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Stand-Alone Tables 
LUMASS also supports the viewing and processing of stand-alone table data. To import tabular data, 
drag either a i) valid SQLite database, ii) a comma separated text file (*.csv), or iii) an Excel spread 
sheet (Excel 97 - 2003, *.xls) into the Map Layers, Table Objects, or Map View display 
areas (Figs. 1-3, 1-4, 1-1) respectively.  

Spatial System Dynamics Modelling Framework 

Model Structure 
LUMASS’ spatial modelling framework is built around two core components: i) data and ii) processes. 
The process components work on their input data to produce output data. Each process component 
represents a self-sufficient basic (spatial) algorithm that only depends on appropriate input data and 
a set of parameters. For example, the process component labelled extract majorcat (Fig. 6, 
bottom left corner), extracts higher order catchment identifiers from a given attribute of the input 
layer’s attribute table. The new image data created by this process (i.e. its output), is passed on as 

input data to the next processing component createRAT. This component summarises the 
aggregated catchment data it receives and creates an attribute table containing a record for each 
higher order catchment. The received input data together with the newly created attribute table 
constitutes this component’s output data. It is passed on to the ImageWriter component, which 
stores the image together with its associated attribute table as image file on disk. Such a sequence 
of process components, concatenated by their respective output and input data, is referred to as a 
processing pipeline.  

Stand-alone process components and processing pipelines can be combined to aggregate 
components. This might be simply done to contain several pipelines contributing to the same higher 
level process, or to enable the repetitive execution of its child components. For example, the 
aggregate component MarkCat (Fig. 6, top right) is executed three times in succession, which is 

indicated by the number 3 next to the circular arrow symbol in its title bar. It means that the 
processing pipeline hosted by the component is executed three times in a row. In each iteration, the 
ImageReader component (cat) reads the same sub-catchment image file including its associated 

raster attribute table and passes it on to the SQLProcessor component (mark major 
catchments). This identifies, for a different catchment in each iteration, all of the catchment’s 
upstream catchments and writes a new higher order catchment identifier for all identified 
catchments into the raster attribute table.  

Aggregate components may be nested inside each other to construct complex hierarchical 
processing workflows. Together with the capability to repetitively execute components (Looping and 
Branching), it enables the development of models operating on multiple temporal scales.  
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Figure 6 Hierarchical model structure and execution order 

Properties and Parameters 
In the following sections we will often refer to parameters and properties. To avoid any confusion, 
we here define their meaning in the context of the LUMASS modelling framework. 

Parameter 

In a LUMASS model, a parameter denotes a constant value over a single execution of a process 
component. It may be a text (string) or numeric value and may reference specific data or a specific 
mode of computation. For example, a parameter could specify a particular characteristic of an 
image, such as its number of bands, a particular table, column, or row in a SQL expression, a 
constant numeric value in a mathematical equation, or a particular mode of computation, e.g. 
STRIPPED versus TILED streaming (cf. ImageWriter).  

Property 

A property refers to a particular characteristic of a model component. It ties a model parameter 
value to a specific model component and represents the technical means by which a model 
parameter is supplied to an aggregate or process component. Table 1 provides a list of properties 
shared across model and process components respectively. In addition to these general properties, 
individual process components are characterised by further properties depending on their specific 
functionality. Please refer to the Model Component Reference section for a comprehensive 
overview.  
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Table 1 General model and process component properties 

 Property Characteristic Meaning 

(A
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) 

M
o

d
el

 C
o

m
p

o
n

en
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ComponentName 
compulsory, 
system-defined 

Unique model component name; LUMASS 
ensures that each model component can be 
uniquely identified by its 
ComponentName 

UserID 
optional, 
user-defined 

A non-unique user-defined short name, 
which is used to refer to a specific model 
component in map algebra expressions, 
map kernel scripts, SQL statements, and 
parameter expressions.  

Description 
optional, 
User-defined 

A short user-defined description of the 
component; it defaults to the 
ComponentName 

TimeLevel 
compulsory, 
user-defined 

The user editable time level of the model 
component; time levels are used to define 
the control flow of a model 

Inputs 
optional, 
user-defined 

A list of the ComponentNames of the 
input components; 

IterationStep 
compulsory,  
user-defined 

The start iteration step for the next 
execution of the component, or the actual 
iteration step if the component is currently 
being executed  

NumIterations 
compulsory, 
user-defined 

The number of times the component is 
executed 

NumIterationsExpression 
optional, 
user-defined 

A list of parameter expressions to 
dynamically define the number of times a 
component is executed (e.g. used for 
conditional iteration) 

P
ro

ce
ss

 C
o

m
p

o
n

en
t 

ProcessName 
compulsory 
system-defined 

The non-editable class name of the process 
object embedded in this model component 

InputNumDimensions 
compulsory, 
user-defined 

The number of dimensions of the input 
component 

NMInputComponentType 
compulsory, 
user-defined 

The data type of the input component 

NMOutputComponentType 
compulsory, 
user-defined 

The data type of the output component 

InputNumBands 
compulsory, 
user-defined 

The number of bands of the input 
component 

OutputNumBands 
compulsory, 
user-defined 

The number of bands of the output 
component 

 

Control Flow 

Execution Sequence 

The model component create major cat file (Fig. 6) extracts three aggregated higher 
order catchments from a provided sub-catchment file and writes them together with an associated 
attribute table into a new image file. The overall functionality is broken down into smaller processing 
steps, which, executed in the right order, provide the desired result. To control the execution 
sequence of process and aggregate components, LUMASS uses time levels that are assigned to each 
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individual model component. The time level is shown next to a clock symbol in the top left corner of 
each component. Execution flows from higher time levels to lower time levels and from higher 
aggregation levels to lower aggregation levels, i.e. from the outside to the inside. For example, the 
execution sequence of the create major cat file (Fig. 6) component is as follows (with time 
levels labelled with TL):  

TL 9: create major cat file 

TL 15: PrepareCatMarking 
TL 15: Pipeline to prepare the raster attribute table (RAT) (e.g. add columns, etc.) 

TL 12: MarkMajorCatchments 
TL 13: MarkCat (note: executed 3 times in a row) 

TL 13: Pipeline to mark major catchments 
TL 12: Pipeline to mark other catchments 

TL 9: WriteMajorCatchmentFile 
TL 9: Pipeline to extract majorcat and create RAT 

Process components that are part of a processing pipeline and that share the same host component 
(i.e. aggregate component), have to sit on the same time level to be properly initialised prior to 
pipeline execution. Note that, counter intuitively to the overall down-stream execution flow, 
pipeline execution always starts at the bottom end of each pipeline (pull model) (Johnson et al. 
2016). That means the position of a pipeline’s bottom end component in the model hierarchy 
determines when the pipeline is executed. Consequently, the number of iterations of a pipeline-
end’s host component determines the number of times the whole pipeline is repeated in sequence. 
This implies that a processing pipeline may reach across different aggregate components as long as it 
follows the general rule of down-stream execution (and thus data) flow. In other words, individual 
processing components that are linked into a processing pipeline, may only provide input to other 
process components that sit either on the same time level and share the same host component or 
that are positioned down-stream with regard to the overall model hierarchy. Components that are 
not part of a processing pipeline but share the same host component and time level, may be 
executed in an arbitrary order.  

Time levels are user-defined (Table 1) and do not necessarily have to be strictly sequential, i.e. the 
sequence may omit individual numbers. For example, the internal execution sequence inside the 

create major cat file component starts at time level 15, which is followed by time level 

13. The only rule LUMASS enforces is that the minimum time level of child components inside an 
aggregate component must not be smaller than the time level of the component itself (i.e. their host 
or parent component). For example, when the hierarchy of a model is changed by moving or cloning 
components from one component to another, if required, LUMASS automatically adjusts the time 
levels of the inserted components according to this rule. Additionally, LUMASS provides efficient 
means to change and adjust time levels for multiple components at a time.  

Looping and Branching 

Conditional execution in a LUMASS model is possible at two levels: i) the pixel or record level, and ii) 
the component level. Conditional statements at the pixel level are provided by the MapAlgebra 
and the MapKernelScript2 components and at the record level by the SQLProcessor 
component. While these enable the conditional computation of individual pixel or table record 
values, conditional execution at the component level enables runtime control over the execution of 
aggregated components representing higher level processes. This is implemented by way of the 

NumIterationsExpressions property (Table 1) that enables the dynamic definition of the 
number of times an aggregated component is executed, which, if the value is zero, is not executed at 
all. However, if no NumIterationsExpression is provided, the number of iterations of an 
aggregate component is defined statically using its NumIterations property (Table 1).  
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Dynamic Model Parameters 

Parameter Lists 

To support the representation of dynamic systems as well as enabling the assessment of model 
sensitivities and uncertainties, LUMASS provides the concept of dynamic parameters by way of i) 
static parameter lists for individual component properties and ii) parameter expressions. A 

parameter list provides a set of values (Fig. 7, 1..n) to a particular component property (Table 1). 
During an iterative execution (1..m) of the component’s host component (Fig. 7, Aggregate 
Component), these parameter values are passed on to the process component’s property one after 
another, as long as there are more values on the list. In case the iteration continues beyond the last 
available parameter value (m > n), the last value is re-used for the remainder of the iterations. By 
default, an iteration starts with IterationStep = 1. However, it may be re-configured by the 
user, e.g. to debug or test a particular modelling step or to statically disable a particular component 
(IterationStep > NumIterations) (in the latter case, the aggregate component is 
rendered transparent to indicate that the component is disabled).  

 

Figure 7 Dynamic processing pipeline 

Parameter Expressions 

Notation 

Parameter expressions extend LUMASS’ capabilities to dynamically set model parameters at 
runtime. They enable  

a. access of numeric process and aggregate component property values,  
b. retrieval of table values (text and numeric), and the 
c. evaluation of mathematical expressions to calculate parameter values. 

Parameter expressions to access component property values or to retrieve table values, take the 
following general form:  

$[<component>:<property | column>:<index>]$ 
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with: 

<component>:  Unique ComponentName or UserID of the component providing the 
parameter. In case the given parameter expression references a table value, the 

component referred to may be an ImageReader, a TableReader, or a 
DataBuffer or DataBufferReference.  

Note: Since UserIDs are non-unique identifiers, here it references the first strictly upstream 

component matching the given UserID. That is, starting at the hierarchy level of the 
component, whose property is going to be set by the given expression, LUMASS looks for a 

component matching the specified UserID. If no component is found, the search continues at 
the next higher level, i.e. the component’s host component’s level, until a matching 
component is found. Thereby, the search direction is strictly upward, that is child components 
of any aggregate component on the search path are excluded.  

<property | column>: Property or table column name 

<index>: In case the given property name references a list of values (e.g. table column 
values), index refers to the 1-based index of the referenced value.  

Note: If the expression references a table column value, the index value actually refers to the 
table’s primary key. If the primary key is 0-based, LUMASS adjusts the user-specified 1-based 
index automatically to deliver the appropriate result. If the given index cannot be found in the 

table, model execution is aborted and LUMASS reports an error in the Notifications 
window. 

In addition to the full qualified form of a parameter expression (s. above), LUMASS supports a special 
short-hand notation to refer to the current IterationStep of an aggregate component: 

$[<component> <+ | -> <integer number>]$ 

It comprises the component specification and may optionally be followed by a simple arithmetic 

expression to add or subtract a whole number to or from the IterationStep respectively. 
Furthermore, LUMASS supports a general more powerful notation to evaluate sophisticated 
mathematical expressions. It is initiated by the character sequence ‘math:’ and is followed by a 
mathematical general expression:  

$[math: <mathematical expression>]$ 

with: 
<mathematical expression>: A mathematical expression as understood by the 

mathematical function parser muparser.  

LUMASS parameter expressions may be nested and may occur anywhere inside a QString type (s. 
Editing Model Parameters) component property value specification, e.g. inside mathematical 
expressions (MapAlgebra), map kernel scripts (MapKernelScript2), or SQL expressions 

(SQLProcessor).  

Examples 

In this section we illustrate and explain the use of sample parameter expressions. The examples are 
taken from the LUMASS implementation of the DaisyWorld model (Watson and Lovelock, 1983; 
Neuwirth et al., 2015). To inspect the model drag the LUMASS model file  

SampleData/models/DaisyWorld/DaisyWorld.lmx  

into the Model View (Fig. 1-2). To locate the individual components, just enter the 
ComponentName or UserID into the search bar in the tool bar (Fig. 2-15). Keep an eye on the 

Notifications window (View | Notifications) when you search by UserID. 

Example 1 (ComponentName: ImageReader1, UserID: landscape, Property: FileNames) 

$[DaisyParams:Path:1]$/$[DaisyParams:LayerName:1]$_0.img 

In this example two parameter expressions are used to specify the FileNames property value of 

the ImageReader1 component. Each expression refers to the model component DaisyParams, 

http://beltoforion.de/article.php?a=muparser&hl=en&p=features&s=idDef1#idDef1
http://beltoforion.de/article.php?a=muparser
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a DataBuffer component with the UserID ‘DaisyParams’ that holds an in-memory connection 

to a SQLite database table. Path and LayerName represent columns in this table and the index 1 
refers to the respective column values stored in the first row of the table. Note that the parameter 
expressions are tightly integrated into the FileNames specification and that each expression is 
replaced by its actual value before the property value is supplied as a model parameter to the 
ImageReader1 process component. In this case, after both parameter expressions have been 
processed, the property value specification evaluates to:  

C:/Temp/DaisyWorld/landscape_0.img 

Example 2 (ComponentName: ImageWriter2, UserID: N/A, Property: FileNames) 

$[DaisyParams:Path:1]$/$[DaisyParams:LayerName:3]$_$[LifeCycle]$.img 

This parameter expression demonstrates the short-hand notation to refer to the IterationStep 
property of the aggregate component LifeCycle. Whereas the first and second parameter 
expression in the FileNames value specification refer to static values in the DaisyParams table, 
the $[LifeCycle]$ expression refers to the dynamically changing IterationStep property 

value during the repetitive execution of the LifeCycle aggregate component. For example, given 
an IterationStep value of 1 and a NumIterations value of 100 before the execution of the 
LifeCycle component, the above FileNames specification evaluates to  

C:/Temp/DaisyWorld/Age_10.img 

in the 10th iteration of the component (i.e. IterationStep = 10). 

Example 3 (ComponentName: AggrComp2, UserID: ShrinkWhite, Property: NumIterationsExpression) 

$[math: rint( 

$[DaisyWorldBuffer:$[DaisyParams:ColumnName:8]$:$[LifeCycle]$]$ 

) < 0 ? 1 : 0]$ 

This example nests regular parameter expressions with the short-hand IterationStep notation 
and a mathematical parameter expression. The outermost expression  

$[math: rint(<expr2>) < 0 ? 1 : 0]$  

rounds a floating point value <expr2> to the nearest integer value and returns 1, if the result is 
negative and 0 otherwise. <expr2> evaluates to a floating point number, which is looked up from 

the DaisyWorldBuffer table. This table contains model state and control data, which are 
calculated for each iteration of the LifeCycle aggregate component. <expr2> specifies where the 
required data for the particular iteration step is located in the table: 

$[DaisyWorldBuffer:<expr3>:<expr4>]$ 

The column name and the row index in <expr2> are in turn represented by parameter expressions 

<expr3> and <expr4>, which represent a regular parameter expression and an 
IterationStep expression respectively:  

$[DaisyParams:ColumnName:8]$ 

$[LifeCycle]$ 

This suggests that for each iteration the data is read from the same column but a different row and 

that the latter depends on the IterationStep of the LifeCycle component.  
LUMASS successively evaluates nested parameter expressions from the inside to the outside to 
generate the actual parameter value to be supplied to the model component. The dynamic 
expression in this example evaluates to either 1 or 0 and specifies the 

NumIterationsExpression property value of the aggregate component ShrinkWhite, a 
child component of the LifeCycle aggregate component. Hence, it controls whether 
ShrinkWhite is being executed as part of the actual iteration step of the LifeCycle 
component or not. 
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Editing Model Parameters  

Property values are specified using the Component Properties window (Fig. 1-7). Moving the 
mouse pointer over the Property Value section of the window indicates the property type: 

 bool (True or False) 

 int (whole number; enumeration) 

 PixelType (enumeration) 

 QString (text) 

 QStringList (list of texts) 

 QList<QStringList> (list of lists of texts) 

 QList<QList<QStringList> > (list of lists of lists of texts) 

The bool, int, PixelType, and QString type properties can be edited by clicking into the 
Value section of the Component Properties window to either change or select the 
appropriate value for the given property respectively. The latter one can also be edited using the 
parameter editor (Fig. 9, s. below) by clicking the … button at the left hand side of the inline editor 
for QString type properties (Fig. 8).  

 

Figure 8 Component Properties window: Inline editor for QString type properties 

bool, int, PixelType, and QString type properties represent static single values, which 
cannot change during an iteration sequence. However, properties of type QString may also be 
specified using parameter expressions, which can be used to effectively circumvent this restriction. 
Properties of type QStringList, QList<QStringList>, and 

QList<QList<QStringList> > represent parameter lists representing parameter values of 
increasing dimensionality. Whereas a QStringList comprises a single QString type property 
value per iteration step, QList<QStringList> represents a list of property values supplied to 
the model component each iteration step. Consequently QList<QList<QStringList> > 
represents a table of values, which is supplied each iteration step to the model component. It is 
important to point out that the actual parameter value, though encoded as QString type, may 
actually represent a numeric value or in fact a string of characters (i.e. text). QString is only used 
as a carrier, able to encode all different types of parameter values as well as representing complex 
nested parameter expressions, which can be evaluated to an actual parameter value of any type. 
Parameter lists are edited using the parameter editor (Fig. 9), which opens automatically when 

clicking into the appropriate Value section of a parameter list property.  
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Figure 9 Parameter Editor 

It facilitates the specification of parameter lists by providing 

 context menu and drag & drop driven editing of lists and parameters (Fig. 9, left) 

 syntax highlighting and auto-completion for editing parameter expressions (Fig. 9, middle) 

 a preview evaluation of parameter expressions for the given model state (Fig. 9, right) 

Note that the auto-completion and preview evaluation functionality of the parameter editor 
depends on the referenced model components (and their underlying data) being available and 
properly initiated.  

Processing Pipeline 
Apart from concatenating data objects and processing objects, processing pipelines offers two main 
benefits: 

Sequential processing of large images: The image(s) are split into smaller image regions, which are 
then processed one by one and reassembled at the end of the pipeline (e.g. an ImageWriter 
component).  

Parallel processing: The parallel processing of individual image regions (s. sequential processing) in 
individual threads. Whether a process component provides multi-threading or not depends on the 
implemented algorithm. Most LUMASS process components support at least partial parallel 
processing.  

The above processing pipeline benefits are provided by the core libraries underpinning the 
processing capabilities of the LUMASS modelling framework, i.e. Insight Toolkit (ITK) and Orefo 
Toolbox (OTB). Please consult the ITK Software Guide (Johnson et al., 2016) for further information.  

Model Component Reference 
Table 2 provides an overview of the currently available model components within LUMASS (version 

0.9.52). 

  

https://itk.org/
https://www.orfeo-toolbox.org/
https://www.orfeo-toolbox.org/
http://www.itk.org/ItkSoftwareGuide.pdf
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Table 2 Available model components 

Component1 Function Inputs2 Outputs2 

CastImagec,e,f Pixel data type conversion 0: Image of type T1 0: Image of type T2 
CostDistanceBufferb Object buffer or cost-

distance surface around/to 
defined objects (i.e. pixel 
values) 

Feature image (file 
name); 
cost image (file 
name) 

Buffer or cost 
distance image 
(file name) 

DataBuffera,f In-memory image and/or 
attribute table 

0: Process 
component output 

0: Image and/or table  

DataBufferReferencea,f Reference to DataBuffer N/A; references 
DataBuffer by 

UserID or 
ComponentName 

0: Image and/or table 

ExternalExecb Execution of an external 
non-interactive programme 
or script 

N/A N/A 

ExtractBandc,f Extract an image band from 
a multi-band image 

0: Multi-band 
image 

0: Single band image 

FocalDistanceWeightc,f Focal CA-based weighting 
algorithm for calculating 
land-use transition 
potentials 

0: Land-use image 0: Neighbourhood-
based influence 
factor for calculating 
land-use transition 
potential 

ImageReaderc,f Reads an image file from 
disk or a rasdaman database 
(3D) including its associated 
RAT 

Image (absolute file 
name or rasdaman 
image 
specification) 

0: Image and 
associated RAT, if 
available 

ImageSorterb Sorts images based on the 
first input image; also 
produces an index image 
containing the 1D unsorted 
input pixel indices 

List of input images 
(file names) 

Sorted images 
written to disk 
(indicated by _desc or 
_asc); index image 
(_idx) containing 
unsorted 1D input 
pixel indices 

ImageWriterc,f Writes an image to disk or 
into a rasdaman database 
(3D) 

0: input image and 
RAT, if applicable 

N/A  

MapAlgebrac,f Pixelwise mathematical 
operation on a set of input 
images and attribute tables 

0..(n-1): single 
band image of type 
T, where n equals 
the number of 
input images 

0..(m-1): single band 
image of type T, 
where m equals the 
number of 
expressions supplied 

MapKernelScript2c,f Script-based pixel 
processing incl. 
neighbourhood access (CA-
based modelling) 

0..(n-1): single 
band image of type 
T, where n equals 
the number of 
input images 

0: single band output 
image 
1: AuxData Table 

ParameterTablea A visual and editable stand-
alone table in the model 
view 

N/A N/A 
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Component1 Function Inputs2 Outputs2 

RandomImagec,f Creation of a range 
constrained pseudo random 
image from scratch 

N/A 0: single band output 
image 

ResampleImagec,f Resamples an image using 
different interpolation 
methods  

0: single band input 
image  

0: resampled single 
band output image  

SpatialOptimisationd,f Solves a spatial optimisation 
problem on input’s RAT 

0: input image with 
associated RAT 

0: output image with 
associated RAT 

SQLProcessorc,f Performs SQL processing on 
input tables 

0: input image 
(with associated 
RAT) or stand-
alone table, image 
is passed through 
as single output  
1..(n-1): input 
image or stand-
alone table 

0: input image at 
index 0 

SummarizeZonesc,f Calculates a zonal statistic 
of image 1 within the zones 
of image 0 

0: integer zone 
image 
1: value image  

0: integer zone image 
with RAT summary 
statistic of input 1 (or, 
if not available, input 
0)  

TableReaderd Reads a stand-alone *.csv, 
*.xls or SQLite table from 
disk; note: if *.csv or *.xls 
files are supplied it creates 
an associated SQLite 
database (*.ldb) and table 
and opens a connection to 
the table 

Input table (file 
name) 

0: stand-alone table 
(suitable for SQL 
processor) 

TextLabela Rich text label component 
for comments model 
description 

N/A N/A 

UniqueCombinationc,f Identifies unique 
combinations of input pixel 
(raster union) 

0..(n-1): categorical 
input image 

0: unique 
combination index of 
inputs with 
associated RAT 
showing original pixel 
value per input layer 

1  
a: model component; b: stand-alone process component, cannot be incorporated in pipeline; c: streamable process 

component; d: non-streamable process component; e: multi-band support; f: 3D support (experimental) 
2 Inputs and outputs are prepended by their 0-based index position they have to be provided at (input) or can be accessed 

at (output) (e.g. MapAlgebra:0 refers to the first output and MapAlgebra:1 to the second output of the 

MapAlgebra component respectively)  
RAT: raster attribute table 

Please note that the description of component properties in the following sections only refers to the 
actual type of the parameter value that is supplied to the component during an individual iteration 
step.  
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ExternalExec 

Overview 

ExternalExec enables the execution of any non-interactive programme or script installed on the 
computer running LUMASS or the LUMASS engine. LUMASS executes the specified Command and 
continues its internal processing workflow after the execution of the external programme or script 
has finished.  

Properties 

Command (QStringList): Operating system specific command (text) including any command-line 
arguments to execute the external programme or script.  

Arguments (QStringList): Do not use. 

FocalDistanceWeight 

Overview 

This filter implements a focal weighting algorithm as described by White et al. (1997, p. 326). The 

central pixel of a circular neighbourhood of radius r is weighted according to the occurrence of 
certain pixel values within defined distance classes.  

Distance Classes 

The number of distance classes n is defined by the radius of the neighbourhood and can be 
calculated as follows (note: zero distance is not included): 

n = ((r*r) / 2.0) + 0.5  (odd radii) 

n = ((r*r) / 2.0) + 1.5  (even radii) 

Weights Matrix 

The weights for certain pixel values for each of the distance classes is provided by a m x n matrix 
(Weights), where n (i.e. number of columns) equals the number of distance classes and m (i.e. 
number of rows) equals the number of pixel values to take into account in the weighting procedure. 

The Weights matrix needs to be ordered with classes representing increasing distance from left to 
right. The indices of the rows for individual pixel values need to be provided as an accordingly 
ordered array of values (i.e. Weights[i][0] represents the weight of pixel value Values[i] for 
the smallest distance class). 

Properties 

RadiusList (QStringList): Radius (integer) of the focal neighbourhood in pixel.  

Weights (QList<QList<QStringList> >): Matrix (table) of weights (float).  

Values (QList<QStringList>): List of pixel values of NMInputComponentType type to 
be accounted for in the weighting algorithm. 

ImageReader 

Overview 

The ImageReader component reads images from files stored on a hard drive or from a rasdaman 
database.  

Reading Image Files from Disk 

Image files may be stored in any image format that uses regular file names (e.g. 
/home/images/myimage.img) and that is supported by the underlying GDAL library. Sub-
datasets, for example stored in a NETCDF file, cannot be directly read by LUMASS. However, they 
may be extracted beforehand, for example, by using the ExternalExec component in 
conjunction with the gdal_translate command-line application.  

http://rasdaman.org/
http://gdal.org/
http://www.gdal.org/gdal_translate.html
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Reading Images from a Rasdaman Database 

To read an image from a rasdaman database, the RasConnector property needs to be set to 
True. Furthermore, the user needs to have access to a rasdaman database instance and the rasgeo 
client application for rasdaman needs to be setup. Rasdaman images are specified by their collection 
name and, if applicable, by their unique object identifier (OID). Collection name and OID are 

separated by a colon ‘:’, e.g. MyRasdamanCollection:3053. If the OID is omitted and the 
given collection comprises more than one image, LUMASS interprets the images in the given 
collection as a multi-band image.  

Reading Raster Attribute Tables (RAT) 

If the given image has an associated raster attribute table (RAT), LUMASS automatically reads it 

together with the image. ImageReader provides the RAT in one of two different modes, i.e. a 
simple in-memory table (ATTABLE_TYPE_RAM), or as a SQLite database table 
(ATTABLE_TYPE_SQLITE) (s. property RATType). In the latter case, the table name inside the 
SQLite database is based on the image file’s base name. For example the RAT name inside a SQLite 
database for the image C:/temp/myimage.img  would be myimage_1, where the ‘_1’ 
represents the band number of the image. However, LUMASS currently only supports fetching the 
RAT of the first band. The different types of tables provide different benefits for different purposes. 
For example, a SQLite database table is required by the SQLProcessor component to perform 
tree queries or create or join tables. Additionally, SQLite database tables don’t have to be kept in 

main memory. In-memory tables (ATTABLE_TYPE_RAM), on the other hand, cannot be used for 
SQL-based processing, but provide fast access to tabular data, e.g. to the MapAlgebra or the 
MapKernelScript2 component respectively.  

Properties 

FileNames (QStringList): Input image file name (i.e. absolute file path or rasdaman image 
specification).  

RasConnector (bool): If set to True, the component expects to read from a rasdaman 
database and FileNames  to provide a rasdaman image specification rather than a disk-
based file name. 

RATType (enumeration): Defines whether the image’s RAT, if applicable, is read into an in-
memory RAT (ATTABLE_TYPE_RAM) or a SQLite database table 

(ATTABLE_TYPE_SQLITE). 

RGBMode (bool): If set to True, the image’s internal pixel type is interpreted as ‘RGB’ and each 
colour component is of type NMOutputComponentType. Note that this is not required to 
read multi-band images in general, but only if another component requires the internal RGB 
image pixel type (cf. Johnson et al. 2016, RGB Images). 

BandList (QList<QStringList>): A list of 1-based (integer) band numbers. The parameter 
may be left empty to read all bands of the image. 

ImageWriter 

Overview 

The ImageWriter component writes images and an associated RAT to disk or into a rasdaman 
database. Support for building overview (pyramid) layers is currently only available for disk-based 
image files.  

Writing an Image File to Disk 

The ImageWriter uses the GDAL library to write images to the hard drive. Image file names have 
to be specified as absolute file path.  

http://rasdaman.org/wiki/RasgeoUserGuide
http://rasdaman.org/
http://gdal.org/
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Writing an Image to a Rasdaman Database 

To write an image into a rasdaman database, the RasConnector property needs to be set to 
True. Furthermore, the current user needs to have access to the rasdaman database instance and 
needs to have setup the rasgeo client application for rasdaman. To write a new image into a 
rasdaman database, the user has to specify the collection name, the image is going to be stored in. If 
the collection does not exist, it is created upon writing the image. If the collection already exists, 
LUMASS adds a new image to the collection. If the collection name is specified together with a valid 
OID, the specified image is going to be updated.  

Properties 

FileNames (QStringList): Disk-based storage: Absolute file path of the output image to be 

created (or overwritten) on disk. Note that the file name extension, e.g. ‘.img’, defines the 
GDAL-supported output image type. Database storage: Rasdaman image specification.  

RasConnector (bool): If set to True, ImageWriter expects to write to a rasdaman 
database and FileNames to provide a rasdaman image specification rather than a disk-
based file name.  

InputTables (QStringList): The name of a component providing the RAT to be stored 
together with this image. Note that if this parameter is specified, the WriteTable 
parameter is ignored. 

WriteImage (bool): Defines whether the actual image data is going to be written out. Setting this 
property to False avoids unnecessary write operations, e.g. if only the RAT of an image is 
being processed by the input component (e.g. SQLProcessor) and shall be written out.  

WriteTable (bool): If the input image has an associated RAT, this property defines whether it is 
written out together with the image or not. Note that this property is being ignored, if the 
InputTables property is specified. 

UpdateMode (bool): If set to True, the output image is opened in update mode, rather than 
being overwritten. This mode is required when an input processing component performs a 
global operation (i.e. all image data is required to be processed to provide a meaningful 
output) and hence its output data is only valid after all pixel of the image have been 
processed. For example, the zonal statistics table created by the SumZones component is 
only provided after the processing of the input image is completed. Note that not all image file 
formats support this mode. Double check the GDAL formats reference for information. 

StreamingMethodType (enumeration): Defines how the input image is split for streamed 

(i.e. sequential) processing. (TILED: set of rectangular regions; STRIPPED: set of rows)  

StreamingSize (int): The maximum approximate memory usage (MB) (integer) of the pipeline 
this writer is connected to.  

PyramidResamplingType (enumeration): The resampling method used to build overview 
(pyramid) layers. The option NONE writes or updates an image without creating overviews. 

RGBMode (bool): If set to True, the writer interprets the internal image’s pixel type as ‘RGB’ and 
the type of each colour component as NMInputComponentType. Note that this is not 
required for writing multi-band images. However, it is required to write an input image with 
RGB pixel type (cf. Johnson et al. 2016, RGB Images).  

MapAlgebra 

Overview 

The MapAlgebra component performs a pixelwise mathematical operation on a series of input 
images. All input images have to share the same physical space (i.e. origin, extent, and resolution) 
and pixel type and must be single-band.  

http://rasdaman.org/wiki/RasgeoUserGuide
http://gdal.org/
http://www.gdal.org/formats_list.html
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Mathematical Expression 

The mathematical operations supported by this component are defined by its underlying muparser 
library. A list of its built-in functions and operators can be found here. In addition to these built-in 
functions, LUMASS supports the following functions and constants: 

rand(a,b): returns a uniform pseudo random integer number n in the range a <= n <= b 
fmod(a, b): returns the remainder of a/b. 

constants: e, log2e, log10e, ln2, ln10, pi, euler 

Inside a mathematical expression, input images are referred to by the UserID of their associated 
model component (e.g. ImageReader, ExtractBand, etc.). Attribute data is referred to by 
concatenating the respective UserID and the table column name by a double underscore:  

<UserID>__<column name> 

For example, the extract majorcat MapAlgebra component in the 
WriteMajorCatchmentFile component (Fig. 6, bottom left), uses the following expression to 
extract the major catchment identifier from the input image (UserID: cat): 

cat < 0 ? 0 : cat__MajorCatID 

This expression sets all output pixel values to 0 if their respective input pixel value cat is smaller 
than 0 (cat < 0). If the condition cat < 0 is false, it assigns the respective attribute table value 

in column MajorCatID of input image cat to the output pixel. Please note that a MapAlgebra 
expression does not support the muparser assignment operator. The given expression is evaluated 
for each individual set of input pixel and its result is automatically assigned to the respective output 
pixel. Note that expressions may also be nested and use brackets as shown in this example: 

q < 1 ? (1 - 4 / (pi * sqrt(1 - q^2)) * atan(sqrt((1 - q) / (1 

+ q)))) : q == 1 ? (1 - 2 / pi) : 1 - 2 / (pi * sqrt(q^2 - 1)) 

* ln((1 + sqrt((q-1)/(q+1))) / (1 - sqrt((q-1)/(q+1)))) 

Data Types and Type Casting 

Every value used in a muparser expression as well as its return (i.e. output) value after evaluating an 
expression, are internally represented by the data type double (i.e. a 64 bit floating point number). 
Hence, any input data, e.g. tabular data, must be numeric. All non-numeric table columns of an input 
RAT are not made available for usage inside a muparser expression. However, all numeric non-
double-typed input data are casted into a double type, which may involve data loss. Similarly, 
the calculated output pixel value is casted into the NMInputComponentType type configured for 

the MapAlgebra component. For output pixel values, MapAlgebra keeps track of overflows and 
underflows as a result of incompatible data types and issues a warning in the LUMASS 

Notifications window (View | Notifications). 

Multiple Expressions 

It is also possible to define more than one mathematical expression for each iteration step 

(NumExpressions). In that case individual expressions must be separated by a comma ‘,’. It 
means that more than one distinct output image can be produced by an instance of the given 

MapAlgebra component. Each output image can be accessed by its respective output index, 
defined as the expression number minus 1. For example, the result of expression 2 can be accessed 
at output index 1 and the result of expression 5 can be accessed at index 4 etc. Note that although 
all expressions are evaluated at the same time and each time the component is executed, only one 
image is allocated at a time and populated with the appropriate output data of the requested output 
image. Hence, the particular MapAlgebra component needs to be executed each time a different 
output image is requested by a downstream component. 
  

http://beltoforion.de/article.php?a=muparser
http://beltoforion.de/article.php?a=muparser&hl=en&p=features&s=idDef1#idDef1
http://www.cplusplus.com/reference/cmath/fmod/?kw=fmod
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Properties 

InputTables (QStringList): Deprecated – do not use. Note that his property is no longer 
required, since LUMASS automatically fetches RATs associated with input images.  

InputTableVarNames (QList<QList<QStringList> >): Deprecated – do not use. 
Note that his property is no longer required, since LUMASS automatically detects the RAT 
attributes used in the given mathematical expressions. 

MapExpressions (QStringList): Mathematical expression to be performed on the input 
images. 

NumExpressions (QStringList): The number of comma separated expressions supplied per 
iteration. 

UseTableColumnCache (bool): If set to True, input RAT attributes are cached prior to the 
execution of the filter. This option is useful to provide fast access to attribute values during 
the pixelwise computation. Not that this option should be set to False for in-memory RATs 
(ATTABLE_TYPE_RAM).  

MapKernelScript2 

Overview 

This process component executes a small user-defined script to calculate individual output pixel 

values. Depending on the configured neighbourhood size (Radius), individual pixel values in a user-
defined CIRCULAR or RECTANGULAR neighbourhood (KernelShape), may be accessed to 
calculate the output pixel value of the centre pixel. Hence, MapKernelScript2 facilitates the 
implementation of arbitrary focal operators, for example to calculate slope or shaded relief maps, or 
to build cellular automata. The user-defined script represents a sequence of muparser-based 

expressions (cf. MapAlgebra), completed by a semi-colon ';'. Additionally, users may use C-style 
for loops for the repetitive evaluation of a sequence of mathematical expressions (General Kernel 
Script Syntax). 

Neighbourhood (Kernel Window) 

MapKernelScript2 supports a different neighbourhood radius for each image dimension d. The 
kernel window length len in pixel for each dimension is (Johnson et al., 2016, Neighborhood 
Iterators) 

len = 2 * radius(d) + 1 

where radius(d) is the kernel radius in image dimension d. For example, a kernel radius of 1 for 
a 2D image yields a 3x3 neighbourhood. Individual pixel values in the neighbourhood can be 
accessed by their index position in the neighbourhood, which is numbered sequentially from left to 
right and top to bottom (for a 2D image) starting with index 0: 

0 1 2 

3 4 5 

6 7 8 

Accessing Pixel Values 

Input (image) pixel values are referenced by their respective image identifier, that is the UserID of 
the particular input component, such as an ImageReader's UserID. If a kernel radius of greater 
than zero is specified for any of the image dimensions, the input pixel values are accessed using the 
kwinVal function 

v = kwinVal(img, pixIdx, thid, addr); 

where v represents the pixel value of input image img at neighbourhood index position pixIdx. 

The thid and addr parameters are pre-defined constants and have to be supplied for technical 

http://beltoforion.de/article.php?a=muparser
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reason. For the convenience of the user, the index of the centre pixel is provided as pre-defined 

constant centrePixIdx and saves the user from having to calculate it specifically for different 

kernel sizes and shapes. Another convenience function is neigDist 

h = neigDist(pixIdx, addr); 

where h represents the distance in pixel from the centre pixel to the pixel indicated by the 
neighbourhood index pixIdx. addr is a pre-defined constant and has to be supplied for technical 
reasons. 

Accessing Table Values 

Table values are referenced by their 0-based column and row index in the table. For example the 
value t, in column colIdx and row rowIdx of the table mytab can be retrieved with  

t = tabVal(mytab, colIdx, rowIdx, addr); 

where t represents the attribute table value in the (colIdx + 1)th column and (rowIdx + 1)th 
row of table mytab. In this case mytab represents a stand-alone table and is the UserID of a 

TableReader input component. In contrast to a stand-alone table, an input image's RAT is 
referenced by the input component's UserID (e.g. img) extended by the suffix _t, i.e. img_t. 
This is required to distinguish between the image pixel values and the values in its associated RAT 
since each input component only has one UserID. Also note that similar to the kwinVal function, 
the tabVal function also requires the pre-defined constant addr to be supplied as a function 
parameter.  

Referencing the Output Value 

The variable name of the output pixel value is user-defined and has to be specified via property 
OutputVarName. 

General Kernel Script Syntax 

A kernel script is made up of a set of variable assignments, e.g.  

var = a + b; 

The right hand side (i.e. right of the ‘=’ sign) is represented by a muparser expression, concluded by a 
semi-colon ‘;’. See the section Mathematical Expression for a description of LUMASS supported 
muparser expressions. If the left hand side (e.g. 'var = ') is missing, as common for the test 
expression in a for-loop header (s. below), an implicit variable is assigned to it. The typing of 
variables is implicit. Every variable is of type double (cf. Data Types and Type Casting). Variable 

assignments have to be specified explicitly using the '=' sign. A side-effect assignment similar to the 
C-style '++' or '--' operator is not supported. Also not support are the operators '+=', '-=', '/=', and 

'*='. The following listing shows a simple sample script including a C-style for-loop.  

size=10; 

out=0; 

b=5.7; 

for (i=1; i < size; i = i+1) 

{ 

b = b * i; 

} 

out=b; 

  

http://beltoforion.de/article.php?a=muparser
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A for loop may not be nested in a muparser expression, as for example  

var = a < 0 ?  

for (int myvar=0; myvar < numPix; myvar = myvar+1) 

{ 

out=out+1; 

} 

: 0; 

However, for loops itself may be nested, e.g. 

for (i=0; i < number; i=i+1) 

{ 

for (g=4; g >=0; g = g-1) 

{ 

out = i*g; 

} 

} 

and muparser expressions may be used in the loop header or body. 

Reserved Names (Kernel Script Keywords)  

The following list represents the reserved names within a kernel script. These names must not be 
used for user variables: 

numPix : Number of active pixel in the user-defined neighbourhood 

centrePixIdx : 1D neighbourhood index of the centre pixel 
addr : MapKernelScript2 instance identifier 
thid : Thread identifier 

kwinVal : Function to access neighbourhood values by 1D index 
tabVal : Function to access table values by column and row index 

neigDist : Function to access distance between centre pixel and user specified pixel  

mathematical constants: e, log2e, log10e, ln2, ln10, pi, euler 

Auxiliary Output Data 

In addition to the computed output image MapKernelScript2 provides auxiliary output data to 
enable feedback between pixel-level computations and model component control flow. After the 
component has completed the computation of the output image, it creates a table with a simple 
summary statistic for each explicitly and implicitly defined kernel script variable. The columns of the 
table represent the individual variables and the rows of the table represent the summary statistics: 
(in this order) i) minimum value, ii) maximum value, iii) mean value per image pixel, and iv) sum of 
variable value across threads. Please note that the kernel script is executed for each individual pixel 
and that each individual computational thread stores its own instance (and hence value) for each of 
the explicitly and implicitly defined script variables. The summary statistic for the script variables is 
calculated over the thread specific values for each variable after the whole image has been 
completely processed. Hence, the meaning of these summary statistics depends on how the 
individual variables are used and updated during the pixelwise script execution. For example, one 
use case could be the identification of the maximum image value, or counting how often a particular 
pixel value (state) has been changed from one value to another value over the whole image.  

Properties 

Radius (QList<QStringList>): A list of integer values specifying the neighbourhood (i.e. 
kernel) size for each dimension of the image. Hence, the length of the list equals the number 
of dimensions of the input image.  

KernelScript (QStringList): The kernel script to be executed to calculate individual 
output pixel values. 
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InitScript (QStringList): An optional initialisation script, which is executed once before the 
output pixel values are calculated. Note that this is suitable to initiate global counting 
variables or to calculate constant parameters that can then be accessed in the pixelwise 
computation. 

KernelShape (enumeration): If a kernel radius of greater than 0 is specified, this property 
defines the shape of the neighbourhood. 

OutputVarName (QStringList): Variable name for the output pixel value. 

Nodata (QStringList): Defines the value to be assigned to the output pixel value for a non-
neighbourhood-based map script in case of an overflow or underflow result value. (Note that 
this behaviour is to be extended to neighbourhood-based computations.) 

NumThreads (int): Sets the maximum number of threads to be used by this component for 
parallel processing. 

SQLProcessor 

Overview 

The SQLProcessor enables SQL processing on SQLite database tables. Potential input 

components, which may provide SQLite-based RAT or stand-alone tables are ImageReader (s. 

RATType), TableReader, and DataBuffer or DataBufferReference respectively. The 

component may be incorporated into an image processing pipeline, as long as its first input (at index 

0) represents an image with an associated RAT. This image and its RAT is passed on as the only 

output (at output index 0). Streaming may occur depending on the downstream components. For 

example, if an ImageWriter is the only downstream component and its WriteImage property is 

set to false, streaming is omitted and the output table is directly passed on to the writer.  

Properties 

SQLStatement (QStringList): The SQL statement to be executed on the input table(s). 

Important Model Development Guidelines 
 Execution order flows from higher to lower time levels and from higher aggregation levels to 

lower aggregation levels (or from the outside to the inside). 

 Processing pipelines 

o Processing components linked into the same processing pipeline and sharing the same host 
component have to sit on the same time level to ensure proper initialisation. 

o A processing pipeline may reach across aggregate component boundaries as long as all of 
its components only contribute input data to down-stream components, i.e. components 
that are positioned on a lower level in the model hierarchy. 

 Repetitive execution of model components is controlled via the NumIterations or 
NumIterationsExpression property of an aggregate component. 

 Conditional execution of model components is realised via the 

NumIterationsExpression property of aggregate components. 

 The input and output properties dimension, data type, and number of bands need to be defined 
explicitly for each individual process component. 

 Watch the Notifications window for warnings and error messages to help you debug and 
test your model. 



28 
 

How to create a simple processing pipeline 
0. Start LUMASS and select Model View Mode from the View menu (View | Model View 

Mode). This displays the Table Objects, Model Components, and Component 

Properties display areas and collapses the mapping related display areas. 

1. Add a process component to the model: Select the ImageReader entry in the Model 
Components list and drag it into the Model View.  

2. Add the ImageWriter component to the Model View using drag and drop.  

Note: If none of the tools in the tool bar is selected (cf. Fig. 2-1 to 2-5 and 2-7), you can reposition the 
individual components using the mouse. Clicking with the left mouse button on a component shows 
its properties in the Component Properties window. A process component comprises the 
general model component properties (at the top) and the set of general process component 
properties at the bottom (below the ProcessName property). Refer to Table 1 for a short 
description of the general component properties. Please note that each process component has an 
additional set of properties, which define process specific parameters, such as file names.   

3. Link the process components:  
a. Select the Link Components tool (Fig. 2-7) from the tool bar.  
b. Left click on the ImageReader component and hold the left mouse button down. 

c. Move the mouse pointer onto the ImageWriter component and release the left mouse 
button.  

d. Deselect the Link Components tool. 

Note: Always link components starting at the source (output) and ending at the target (input). Click 

on the ImageWriter component and inspect its Inputs property. The ImageReader 

Component is now listed as an input component to the ImageWriter.  

4. Define/double check the components’ properties: For the error-free execution of the 
processing pipeline, it is important to double check the components’ properties.  

Note: An important concept of the modelling framework is that it requires an image’s data type, 
dimension, and number of bands (image characteristics) to be explicitly specified. Furthermore, the 
image characteristics of an output image have to match the image characteristics of an associated 
input image. If these characteristics do not match, the pipeline will not execute properly and produce 
an error. For model components, which don’t have a different input and output type, such as reader 
and writer components, define the input and output components identically.  

a. Define the input file name: Use your filesystem browser to navigate to 
SampleData/data folder. Select the image file LUMASS_icon_2048.kea and drag it 
onto the ImageReader Component. This adds the absolute file name to the FileNames 
property of the ImageReader component.  

b. Define the ImageReader’s image properties: Apply the following settings to the 

component’s corresponding input and output properties:  

ComponentType: uchar 

NumBands: 4 

c. Define the output file name: Click on the ImageWriter to display its properties in the 

Component Properties window. Click on its FileNames property to open the 
parameter editor (Fig. 9). Point into the left hand area of the dialog below the text 
#Iteration. From the context menu (right mouse click) select Insert parameter 
here. This inserts an editable file name parameter into the parameter list. To facilitate 
editing the output file name, drag the input file, as defined for the ImageReader, into the 
Edit parameter window. This inserts the file’s absolute file name into the editor 
window. Delete the leading sequence of characters (‘file:///’) and change the image file 
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name to output_exercise1.img. Click the Apply button to transfer the parameter to 

the component’s FileNames property.  

Note: LUMASS uses a forward slash ‘/’ as path separator independent of the operating system. 
Furthermore, the ImageWriter component recognises the output image format from the defined 
file name suffix. Hence, this pipeline can be used to convert images between different formats as long 
as they are supported by the underlying GDAL library.  

d. Define the ImageWriter’s image properties: Apply the following settings to the 
component’s corresponding input and output properties:  

ComponentType: uchar 

NumBands: 4 

5. Save the pipeline as LUMASS model: Select the ImageReader and ImageWriter components by 
holding the CTRL key and a left mouse click on each component. Now point the mouse on one of 
the components and right click with the mouse to open the context menu. Select Save 2 
Components As … Select a file name and folder for the model file and save the model.  

Note: LUMASS models are comprised of two different files differentiated by their file name suffix. The 
*.lmx file saves the actual model as XML representation, whereas the *.lmv file stores binary version 

of the the visual representation displayed in the Model View. While saving or reading a LUMASS 
model file, only one file needs to be explicitly specified. The corresponding other file is read/saved 
automatically by LUMASS. To execute a LUMASS model with the lumassengine commandline 
application, only the *.lmx version of the file is required. However, to edit the file in the LUMASS user 
interface, both files need to be available. 

6. Display the Notifications window: Select the Notifications option from the View 

menu to open the Notifications window. It displays information, warnings, and error 
messages occurring during a model run.  

7. Execute the model: To execute the model either click on the Execute Model button on the 
tool bar (Fig. 2-10) or open the context menu of the ImageWriter component and select 

Execute ImageWriter. If the notifications window does not show any error messages, you 
should find a newly created image file at its specified output location.  

LUMASS Engine 
The LUMASS software comprises two applications (executables), a desktop application including a 
graphical user interface (Fig. 1) and a command-line application, i.e. the lumassengine. Whereas the 
former application is meant for model development and viewing results, the latter application is 
solely meant for running either separate spatial optimisation scenarios, or LUMASS models (Spatial 
System Dynamics Modelling Framework): 

LUMASS (lumassengine) 0.9.52 

Usage: lumassengine --moso <settings file (*.los)> | --model <LUMASS 

model file (*.lmx)> [--logfile <file name>] 

The lumassengine enables the execution of LUMASS models in compute cluster or server 
environments.  

  

http://gdal.org/
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