
LUMASS – User Guide

Author: Alexander Herzig
Version: 0.3 (April 2017)
Copyright: Manaaki Whenua – Landcare Research New Zealand Ltd.

Licence
This user guide provides an overview of the LUMASS software and its basic usage. It is distributed “as
is” in the hope it will be useful. However, we do not provide any warranty; not even the implied
warranty of merchantability or fitness for a particular purpose of this guide or the LUMASS software
itself. You can modify and redistribute this document under the Creative Commons Attribution 4.0
International Licence (CC BY 4.0).

Acknowledgement
LUMASS development has been partly funded by the New Zealand Ministry of Business, Innovation
and Employment’s Science and Innovation Group. The development of the open source version of
LUMASS was enabled and massively supported by research projects led by Daniel Rutledge (Manaaki
Whenua – Landcare Research New Zealand Ltd).

Disclaimer
This document is not an introduction to spatial system dynamics modelling or GIS.

Contents

What is LUMASS? .. 3

Graphical User Interface (GUI) .. 3

Map display ... 4

Layer types ... 4

Data formats .. 5

How to map raster layer values ... 5

How to map raster layer attributes .. 7

Tables .. 8

Attribute Tables .. 8

Stand-Alone Tables... 9

Spatial System Dynamics Modelling Framework .. 9

Model Structure ... 9

Properties and Parameters .. 10

Parameter .. 10

Property ... 10

Control Flow ... 11

Execution Sequence ... 11

Looping and Branching ... 12

Dynamic Model Parameters ... 13

Parameter Lists .. 13

Parameter Expressions ... 13

Editing Model Parameters.. 16

Processing Pipeline ... 17

Model Component Reference .. 17

ExternalExec ... 20

FocalDistanceWeight.. 20

ImageReader .. 20

ImageWriter ... 21

MapAlgebra .. 22

MapKernelScript2 .. 24

SQLProcessor.. 27

Important Model Development Guidelines ... 27

How to create a simple processing pipeline .. 28

LUMASS Engine ... 29

References .. 30

3

What is LUMASS?
LUMASS is a Land Use MAnagement Support System and is designed to provide support for two high
level aspects of land management: i) land use impact assessment and ii) spatial planning. The former
aspect is supported by LUMASS’ spatial system dynamics modelling framework, whereas the latter is
supported by LUMASS’ spatial optimisation component (s. SpatialOptimisationHowTo.pdf).

LUMASS is mainly focused on processing and displaying raster data. However, it also provides
selected functionality of displaying (polygon) vector data and 3D point clouds. Spatial optimisation
scenarios can also be run on polygon vector layers.

Graphical User Interface (GUI)

Figure 1 LUMASS graphical user interface

1. Map View: 2D/3D Display area for raster and vector layers as well as for point clouds
2. Model View: Visual modelling environment
3. Map Layers: Table of contents and legend configuration for layers displayed in the map view
4. Table Objects: Table of contents for stand-alone tables (s. Table view)
5. Model Components: List of available model process components in the modelling environment
6. Layer Attributes: List of map layer attribute values for a given point in the map (view)
7. Component Properties: Properties of a given model component
8. Table View: Table display and processing interface
9. Menu Bar & Tool Bar

https://bitbucket.org/landcareresearch/lumass/downloads/OptimisationHowTo_1.1.zip

4

10. Notification Area: (not shown in Fig. 1) displays information, warning, and error messages
related to processing and modelling tasks

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 2 LUMASS tool bar

1. Zoom in map/model view
2. Zoom out map/model view
3. Zoom to map/model content
4. Pan map/model
5. Select features/components
6. Clear selection (features / components)
7. Link model components
8. Reset model
9. Stop model execution
10. Execute model
11. Display/hide map view
12. Display/hide model view
13. Stack main views horizontally
14. Stack main views vertically
15. Find/zoom to model component (by model component name or UserID)

LUMASS provides a typical desktop user interface that embraces the use of drag & drop and context
menus. So, if you want to accomplish a certain task and are in doubt of how to do it, try drag and &
drop, e.g. to import a table, image, or model into the respective view areas. If you want to perform
an action on a particular object, double check whether it provides a context menu (right click)
offering object specific actions (e.g. map layer, table column, model component).

The user interface can be adjusted to best suit the current task at hand (i.e. mapping, or modelling).
For example, the main views (Figs. 1-1, 1-2) can be individually hidden and displayed (Figs. 2-11, 2-
12) adjusted in their size (by using their separating slider), or stacked vertically or horizontally (Figs.
2-13, 2-14). The display areas left and right of the main views (Fig. 1, Layers & Components

and Attributes and Properties), as well as the not displayed Notifications area are
dockable windows and can be arbitrarily positioned around the centred main views or float on top of
the main user interface. Layer attribute tables and stand-alone tables (Fig. 1-8) are displayed in their
own top level window independent of the main user interface.

The individual content and property display areas (Figs. 1-3 to 1-7) can be collapsed and unfolded

individually by clicking on their respective title button showing their name (e.g. Table Objects,
Fig. 1-4). The View menu provides the view modes Map View Mode and Model View Mode,
which configure the associated display areas for mapping and modelling tasks respectively.

Map display

Layer types
LUMASS supports the display of three different types of spatial layers:

 Raster (2D image) (multi-band and attribute table support)

 Vector (polygon only)

 Point cloud (3D) (experimental)

5

Data formats
The supported data formats for raster and vector layers are largely defined by the supported
formats of the underlying GDAL library used for import and export of 2D raster and vector layers.
Additionally, LUMASS supports the internally used VTK PolyData format (*.vtk) for vector layers. On
Linux and if compiled with rasdaman support, LUMASS also provides a direct interface to the
rasdaman array database for reading and writing multi-dimensional image data (including WCS
metadata). Note that LUMASS provides experimental support for processing 3D images using the
spatial modelling framework. Point cloud data may be provided as simple ASCII file, containing the
comma separated x,y,z coordinates of a single point on an individual line. Please note that 3D
mapping (and processing) functionality is still very much in development.

How to map raster layer values
0. In this example we map a multi-band raster layer without attribute table. It can be easily applied

to single band raster layers without attribute tables as well.

1. Navigate to the LUMASS SampleData/data folder: Use your favourite filesystem browser to

do this (i.e. Windows File Explorer, Dolphin, Nautilus, etc.).

2. Load the layer: Select the LUMASS_icon_2048.kea file and drag it into the Map Layers
or Map View area

3. Toggle layer visibility: To toggle the layer’s visibility, click on the coloured tile icon left of the
layer name.

4. Select the layer: Select the layer by left clicking its layer name. The layer name should now be
highlighted in blue. Note that left clicking a selected layer de-selects it.

5. Observe mouse pointer position, pixel values and image resolution: Move the mouse pointer
over the map (i.e. the LUMASS logo) and watch the information displayed in the status bar (Fig.
3) at the very bottom of the GUI.

Figure 3 LUMASS status bar information

It displays from left to right the

a. location of the mouse pointer in map coordinates

b. (0-based) pixel index of the currently displayed image pyramid layer (i.e. reduced resolution
image) of the image, and the

c. pixel value under the mouse pointer

Note: In case of a multi-band image, LUMASS displays three bands of the given image as RGB colour
image and displays the corresponding values in the status bar as RGB tuple.

d. the (0-based) pixel index of the largest possible region

6. Alter displayed image resolution by zooming in and out: Use the mouse wheel or the zoom tool
to zoom in or out. Watch the display at the bottom and the displayed pixel index. When the
displayed pixel index and the largest possible pixel index are identical, the image is displayed in
its maximum resolution.

7. View image layer metadata: Select the layer name in the Map Layers section (Fig. 1-3). Open
the context menu (right click on layer name) and select Show Image Information

http://gdal.org/
http://rasdaman.org/

6

Figure 4 Image information

8. Display the layer legend: Double click on the layer name to display the legend. In case of a multi-
band image, LUMASS maps three of the available bands to represent the colours red, green, and
blue respectively.

9. Change the band assignment: Double click on any of the RGB colour items in the legend and
assign a different band to the given colour.

10. Map the value range of an individual band: Open the context menu of the layer (right click) and
select Map Band Value Range. This maps the entire value range of the selected band
according to a given colour ramp. It is useful for multi-band images that don’t represent colour
values but, for example, a time series of an environmental variable, such as temperature.

11. Adjust the value range mapping: Double click on the band name (Band #1) above the
displayed colour ramp to display the legend administration settings.

Figure 5 Layer legend for a value range map; items displayed in blue font define the layer
legend administration settings

7

e. Change the mapped band: Double click on the Value Field entry and select a different

band or select RGB to return to the RGB mapping mode.
f. Change the value range: Double click on the Upper and Lower entries respectively to

adjust the mapped value range to 100 to 150. Image Values below 100 are now rendered in
black (i.e. the < Lower colour) and image values greater than 150 are now rendered in
green (i.e. the > Upper colour). The image values in the range from 100 to 150 are
linearly mapped against the selected colour ramp.

g. Change the colour ramp and upper and lower colour: Double click on the Colour Ramp
entry in the legend administration settings and select a different colour ramp. To change the
colours used to display values outside the specified range of 100 to 150, double click the
> Upper or < Lower colour items respectively and select a new colour from the colour
dialog. Note that you can also change the alpha channel value for those colours. For

example, setting the alpha channel value to 0, renders any selected colour transparent.

How to map raster layer attributes
0. In this example we focus on the mapping of a raster layer with an associated attribute table.

1. Navigate to the LUMASS SampleData/data folder: Use your favourite filesystem browser to

do this (i.e. Windows File Explorer, Dolphin, Nautilus, etc.).

2. Load the layer: Select the logo_rat.img file and drag it into the Map Layers or Map

View area respectively.

Note that this layer was created from the LUMASS_icon_2048.kea layer using the

CreateLogoWithRAT.lmx LUMASS model in the LUMASS SampleData/models folder. It extracts

the first band (model component ExtractBand) from the image and then uses the model component

SumZones to create an attribute table for the image. SumZones treats each set of pixel that share the
same (integer) pixel value as an individual zone and creates and attribute table entry (i.e. table record) for
it.

3. Display the layer legend: Double click on the layer name to unfold the legend.

Note: Categorical raster layers are displayed by default with a Unique Value legend and the mapped

attribute defaults to the first integer value attribute (here: zone_id). The colours are randomly assigned
to each category.

4. Change the colour of individual (zone_id) categories: Double click on the category ‘0’ and

select an alpha channel value of 0 and click OK. This renders the logo background transparent.

5. Save a unique value legend: To save your individually configured unique value legend, right click
on the layer name and select Save Legend …

Note: The legend is saved as simple comma separated text file (*.csv) and assigns red, green, blue, and
alpha values to each individual category value defined for the given attribute. However, the top row of the
legend table assigns a particular colour value (the default is white) for image values which are not
explicitly defined in the legend table (i.e. nodata colour). The legend can be loaded to colour arbitrary

attributes (Layer Context Menu | Load Legend …) as long as they are displayed as unique value map.
Also note that once you have loaded a particular legend file (i.e. unique value colour legend), this legend
gets reapplied as long as you only change the attribute to be mapped (s. below) and not the legend type
(e.g. to value range mapping).

6. Map a different (integer) attribute: You can change the current attribute being mapped by

either i) using the layer context menu option Map Unique Values … or by ii) double clicking
the Value Field entry in the layer legend administration settings (Fig. 5). Use option i) to change

the mapped attribute to rowidx.

8

7. Map the value range of a layer attribute: To change the legend type, right click the layer name

to open its context menu and select Map Value Range … This maps the currently selected
layer attribute using a colour ramp across the attribute’s value range from minimum to
maximum.

a. Display the layer legend administration settings.
b. Double click on the Value Field item and select the attribute count from the drop

down list

Note: When you move the mouse pointer over the map (don’t forget to select the layer), the pixel values

now displayed in the status bar represent the mapped attribute values of the currently configured Value

Field attribute (here: the number pixel in each category).

8. Display all attribute values for a given point (pixel) in the map:

a. Select the layer name in the Map Layers display area (Fig. 1-3)
b. Move the mouse pointer over the map and click with the left mouse button in the displayed

map.

This opens the Layer Attributes display area (Fig. 1-6). It shows a list of all layer attributes
and their values for the given point.

9. Map the value range of the actual pixel values: Double click on the Value Field item and
select Pixel Values from the drop down list.

Note: Categorical maps use the actual pixel values stored in the image file to reference particular records
in the associated attribute table. In the previous steps (2 to 7) this relationship is used to present a spatial

map of the values stored in the attribute table. The Pixel Values option enables the mapping of the
actual pixel values stored in the image. When you change to pixel values, it might be necessary to re-

adjust the value range (i.e. Upper and Lower values). If you don’t know the appropriate value range, you

can use the layer’s context menu options Visible Pixel Statistics or Whole Image

Statistics to find out the minimum and maximum of the actual pixel values.

10. Display a summary statistic of a layer attribute: Map the value range of a layer attribute (s. step
7). Now, right click the layer name to open the context menu and select Value Field

Statistics.

Note: The value field statistic refers to the currently configured Value Field attribute and is derived
from the values stored in the attribute table for this attribute.

Tables
LUMASS supports two types of tables: i) attribute tables for vector and raster layers and ii) stand-
alone tables.

Attribute Tables
Raster and vector attribute tables are loaded automatically whenever a raster or vector layer is

displayed in the Map View (Fig. 1-1). To view an attribute table, select Open Attribute Table
from the layer’s context menu. Click on the column headers (left mouse button) to sort the table or
open the table’s context menu using the right mouse button. Depending on whether you are viewing
a raster or vector attribute table, LUMASS provides different capabilities especially with regard to
querying and processing the table data. Since raster attribute tables are stored in a SQLite database,
they provide a richer set of querying and processing options than vector attribute tables.

9

Stand-Alone Tables
LUMASS also supports the viewing and processing of stand-alone table data. To import tabular data,
drag either a i) valid SQLite database, ii) a comma separated text file (*.csv), or iii) an Excel spread
sheet (Excel 97 - 2003, *.xls) into the Map Layers, Table Objects, or Map View display
areas (Figs. 1-3, 1-4, 1-1) respectively.

Spatial System Dynamics Modelling Framework

Model Structure
LUMASS’ spatial modelling framework is built around two core components: i) data and ii) processes.
The process components work on their input data to produce output data. Each process component
represents a self-sufficient basic (spatial) algorithm that only depends on appropriate input data and
a set of parameters. For example, the process component labelled extract majorcat (Fig. 6,
bottom left corner), extracts higher order catchment identifiers from a given attribute of the input
layer’s attribute table. The new image data created by this process (i.e. its output), is passed on as

input data to the next processing component createRAT. This component summarises the
aggregated catchment data it receives and creates an attribute table containing a record for each
higher order catchment. The received input data together with the newly created attribute table
constitutes this component’s output data. It is passed on to the ImageWriter component, which
stores the image together with its associated attribute table as image file on disk. Such a sequence
of process components, concatenated by their respective output and input data, is referred to as a
processing pipeline.

Stand-alone process components and processing pipelines can be combined to aggregate
components. This might be simply done to contain several pipelines contributing to the same higher
level process, or to enable the repetitive execution of its child components. For example, the
aggregate component MarkCat (Fig. 6, top right) is executed three times in succession, which is

indicated by the number 3 next to the circular arrow symbol in its title bar. It means that the
processing pipeline hosted by the component is executed three times in a row. In each iteration, the
ImageReader component (cat) reads the same sub-catchment image file including its associated

raster attribute table and passes it on to the SQLProcessor component (mark major
catchments). This identifies, for a different catchment in each iteration, all of the catchment’s
upstream catchments and writes a new higher order catchment identifier for all identified
catchments into the raster attribute table.

Aggregate components may be nested inside each other to construct complex hierarchical
processing workflows. Together with the capability to repetitively execute components (Looping and
Branching), it enables the development of models operating on multiple temporal scales.

10

Figure 6 Hierarchical model structure and execution order

Properties and Parameters
In the following sections we will often refer to parameters and properties. To avoid any confusion,
we here define their meaning in the context of the LUMASS modelling framework.

Parameter

In a LUMASS model, a parameter denotes a constant value over a single execution of a process
component. It may be a text (string) or numeric value and may reference specific data or a specific
mode of computation. For example, a parameter could specify a particular characteristic of an
image, such as its number of bands, a particular table, column, or row in a SQL expression, a
constant numeric value in a mathematical equation, or a particular mode of computation, e.g.
STRIPPED versus TILED streaming (cf. ImageWriter).

Property

A property refers to a particular characteristic of a model component. It ties a model parameter
value to a specific model component and represents the technical means by which a model
parameter is supplied to an aggregate or process component. Table 1 provides a list of properties
shared across model and process components respectively. In addition to these general properties,
individual process components are characterised by further properties depending on their specific
functionality. Please refer to the Model Component Reference section for a comprehensive
overview.

11

Table 1 General model and process component properties

 Property Characteristic Meaning

(A
gg

re
ga

te
)

M
o

d
el

 C
o

m
p

o
n

en
t

ComponentName
compulsory,
system-defined

Unique model component name; LUMASS
ensures that each model component can be
uniquely identified by its
ComponentName

UserID
optional,
user-defined

A non-unique user-defined short name,
which is used to refer to a specific model
component in map algebra expressions,
map kernel scripts, SQL statements, and
parameter expressions.

Description
optional,
User-defined

A short user-defined description of the
component; it defaults to the
ComponentName

TimeLevel
compulsory,
user-defined

The user editable time level of the model
component; time levels are used to define
the control flow of a model

Inputs
optional,
user-defined

A list of the ComponentNames of the
input components;

IterationStep
compulsory,
user-defined

The start iteration step for the next
execution of the component, or the actual
iteration step if the component is currently
being executed

NumIterations
compulsory,
user-defined

The number of times the component is
executed

NumIterationsExpression
optional,
user-defined

A list of parameter expressions to
dynamically define the number of times a
component is executed (e.g. used for
conditional iteration)

P
ro

ce
ss

 C
o

m
p

o
n

en
t

ProcessName
compulsory
system-defined

The non-editable class name of the process
object embedded in this model component

InputNumDimensions
compulsory,
user-defined

The number of dimensions of the input
component

NMInputComponentType
compulsory,
user-defined

The data type of the input component

NMOutputComponentType
compulsory,
user-defined

The data type of the output component

InputNumBands
compulsory,
user-defined

The number of bands of the input
component

OutputNumBands
compulsory,
user-defined

The number of bands of the output
component

Control Flow

Execution Sequence

The model component create major cat file (Fig. 6) extracts three aggregated higher
order catchments from a provided sub-catchment file and writes them together with an associated
attribute table into a new image file. The overall functionality is broken down into smaller processing
steps, which, executed in the right order, provide the desired result. To control the execution
sequence of process and aggregate components, LUMASS uses time levels that are assigned to each

12

individual model component. The time level is shown next to a clock symbol in the top left corner of
each component. Execution flows from higher time levels to lower time levels and from higher
aggregation levels to lower aggregation levels, i.e. from the outside to the inside. For example, the
execution sequence of the create major cat file (Fig. 6) component is as follows (with time
levels labelled with TL):

TL 9: create major cat file

TL 15: PrepareCatMarking
TL 15: Pipeline to prepare the raster attribute table (RAT) (e.g. add columns, etc.)

TL 12: MarkMajorCatchments
TL 13: MarkCat (note: executed 3 times in a row)

TL 13: Pipeline to mark major catchments
TL 12: Pipeline to mark other catchments

TL 9: WriteMajorCatchmentFile
TL 9: Pipeline to extract majorcat and create RAT

Process components that are part of a processing pipeline and that share the same host component
(i.e. aggregate component), have to sit on the same time level to be properly initialised prior to
pipeline execution. Note that, counter intuitively to the overall down-stream execution flow,
pipeline execution always starts at the bottom end of each pipeline (pull model) (Johnson et al.
2016). That means the position of a pipeline’s bottom end component in the model hierarchy
determines when the pipeline is executed. Consequently, the number of iterations of a pipeline-
end’s host component determines the number of times the whole pipeline is repeated in sequence.
This implies that a processing pipeline may reach across different aggregate components as long as it
follows the general rule of down-stream execution (and thus data) flow. In other words, individual
processing components that are linked into a processing pipeline, may only provide input to other
process components that sit either on the same time level and share the same host component or
that are positioned down-stream with regard to the overall model hierarchy. Components that are
not part of a processing pipeline but share the same host component and time level, may be
executed in an arbitrary order.

Time levels are user-defined (Table 1) and do not necessarily have to be strictly sequential, i.e. the
sequence may omit individual numbers. For example, the internal execution sequence inside the

create major cat file component starts at time level 15, which is followed by time level

13. The only rule LUMASS enforces is that the minimum time level of child components inside an
aggregate component must not be smaller than the time level of the component itself (i.e. their host
or parent component). For example, when the hierarchy of a model is changed by moving or cloning
components from one component to another, if required, LUMASS automatically adjusts the time
levels of the inserted components according to this rule. Additionally, LUMASS provides efficient
means to change and adjust time levels for multiple components at a time.

Looping and Branching

Conditional execution in a LUMASS model is possible at two levels: i) the pixel or record level, and ii)
the component level. Conditional statements at the pixel level are provided by the MapAlgebra
and the MapKernelScript2 components and at the record level by the SQLProcessor
component. While these enable the conditional computation of individual pixel or table record
values, conditional execution at the component level enables runtime control over the execution of
aggregated components representing higher level processes. This is implemented by way of the

NumIterationsExpressions property (Table 1) that enables the dynamic definition of the
number of times an aggregated component is executed, which, if the value is zero, is not executed at
all. However, if no NumIterationsExpression is provided, the number of iterations of an
aggregate component is defined statically using its NumIterations property (Table 1).

13

Dynamic Model Parameters

Parameter Lists

To support the representation of dynamic systems as well as enabling the assessment of model
sensitivities and uncertainties, LUMASS provides the concept of dynamic parameters by way of i)
static parameter lists for individual component properties and ii) parameter expressions. A

parameter list provides a set of values (Fig. 7, 1..n) to a particular component property (Table 1).
During an iterative execution (1..m) of the component’s host component (Fig. 7, Aggregate
Component), these parameter values are passed on to the process component’s property one after
another, as long as there are more values on the list. In case the iteration continues beyond the last
available parameter value (m > n), the last value is re-used for the remainder of the iterations. By
default, an iteration starts with IterationStep = 1. However, it may be re-configured by the
user, e.g. to debug or test a particular modelling step or to statically disable a particular component
(IterationStep > NumIterations) (in the latter case, the aggregate component is
rendered transparent to indicate that the component is disabled).

Figure 7 Dynamic processing pipeline

Parameter Expressions

Notation

Parameter expressions extend LUMASS’ capabilities to dynamically set model parameters at
runtime. They enable

a. access of numeric process and aggregate component property values,
b. retrieval of table values (text and numeric), and the
c. evaluation of mathematical expressions to calculate parameter values.

Parameter expressions to access component property values or to retrieve table values, take the
following general form:

$[<component>:<property | column>:<index>]$

14

with:

<component>: Unique ComponentName or UserID of the component providing the
parameter. In case the given parameter expression references a table value, the

component referred to may be an ImageReader, a TableReader, or a
DataBuffer or DataBufferReference.

Note: Since UserIDs are non-unique identifiers, here it references the first strictly upstream

component matching the given UserID. That is, starting at the hierarchy level of the
component, whose property is going to be set by the given expression, LUMASS looks for a

component matching the specified UserID. If no component is found, the search continues at
the next higher level, i.e. the component’s host component’s level, until a matching
component is found. Thereby, the search direction is strictly upward, that is child components
of any aggregate component on the search path are excluded.

<property | column>: Property or table column name

<index>: In case the given property name references a list of values (e.g. table column
values), index refers to the 1-based index of the referenced value.

Note: If the expression references a table column value, the index value actually refers to the
table’s primary key. If the primary key is 0-based, LUMASS adjusts the user-specified 1-based
index automatically to deliver the appropriate result. If the given index cannot be found in the

table, model execution is aborted and LUMASS reports an error in the Notifications
window.

In addition to the full qualified form of a parameter expression (s. above), LUMASS supports a special
short-hand notation to refer to the current IterationStep of an aggregate component:

$[<component> <+ | -> <integer number>]$

It comprises the component specification and may optionally be followed by a simple arithmetic

expression to add or subtract a whole number to or from the IterationStep respectively.
Furthermore, LUMASS supports a general more powerful notation to evaluate sophisticated
mathematical expressions. It is initiated by the character sequence ‘math:’ and is followed by a
mathematical general expression:

$[math: <mathematical expression>]$

with:
<mathematical expression>: A mathematical expression as understood by the

mathematical function parser muparser.

LUMASS parameter expressions may be nested and may occur anywhere inside a QString type (s.
Editing Model Parameters) component property value specification, e.g. inside mathematical
expressions (MapAlgebra), map kernel scripts (MapKernelScript2), or SQL expressions

(SQLProcessor).

Examples

In this section we illustrate and explain the use of sample parameter expressions. The examples are
taken from the LUMASS implementation of the DaisyWorld model (Watson and Lovelock, 1983;
Neuwirth et al., 2015). To inspect the model drag the LUMASS model file

SampleData/models/DaisyWorld/DaisyWorld.lmx

into the Model View (Fig. 1-2). To locate the individual components, just enter the
ComponentName or UserID into the search bar in the tool bar (Fig. 2-15). Keep an eye on the

Notifications window (View | Notifications) when you search by UserID.

Example 1 (ComponentName: ImageReader1, UserID: landscape, Property: FileNames)

$[DaisyParams:Path:1]$/$[DaisyParams:LayerName:1]$_0.img

In this example two parameter expressions are used to specify the FileNames property value of

the ImageReader1 component. Each expression refers to the model component DaisyParams,

http://beltoforion.de/article.php?a=muparser&hl=en&p=features&s=idDef1#idDef1
http://beltoforion.de/article.php?a=muparser

15

a DataBuffer component with the UserID ‘DaisyParams’ that holds an in-memory connection

to a SQLite database table. Path and LayerName represent columns in this table and the index 1
refers to the respective column values stored in the first row of the table. Note that the parameter
expressions are tightly integrated into the FileNames specification and that each expression is
replaced by its actual value before the property value is supplied as a model parameter to the
ImageReader1 process component. In this case, after both parameter expressions have been
processed, the property value specification evaluates to:

C:/Temp/DaisyWorld/landscape_0.img

Example 2 (ComponentName: ImageWriter2, UserID: N/A, Property: FileNames)

$[DaisyParams:Path:1]$/$[DaisyParams:LayerName:3]$_$[LifeCycle]$.img

This parameter expression demonstrates the short-hand notation to refer to the IterationStep
property of the aggregate component LifeCycle. Whereas the first and second parameter
expression in the FileNames value specification refer to static values in the DaisyParams table,
the $[LifeCycle]$ expression refers to the dynamically changing IterationStep property

value during the repetitive execution of the LifeCycle aggregate component. For example, given
an IterationStep value of 1 and a NumIterations value of 100 before the execution of the
LifeCycle component, the above FileNames specification evaluates to

C:/Temp/DaisyWorld/Age_10.img

in the 10th iteration of the component (i.e. IterationStep = 10).

Example 3 (ComponentName: AggrComp2, UserID: ShrinkWhite, Property: NumIterationsExpression)

$[math: rint(

$[DaisyWorldBuffer:$[DaisyParams:ColumnName:8]$:$[LifeCycle]$]$

) < 0 ? 1 : 0]$

This example nests regular parameter expressions with the short-hand IterationStep notation
and a mathematical parameter expression. The outermost expression

$[math: rint(<expr2>) < 0 ? 1 : 0]$

rounds a floating point value <expr2> to the nearest integer value and returns 1, if the result is
negative and 0 otherwise. <expr2> evaluates to a floating point number, which is looked up from

the DaisyWorldBuffer table. This table contains model state and control data, which are
calculated for each iteration of the LifeCycle aggregate component. <expr2> specifies where the
required data for the particular iteration step is located in the table:

$[DaisyWorldBuffer:<expr3>:<expr4>]$

The column name and the row index in <expr2> are in turn represented by parameter expressions

<expr3> and <expr4>, which represent a regular parameter expression and an
IterationStep expression respectively:

$[DaisyParams:ColumnName:8]$

$[LifeCycle]$

This suggests that for each iteration the data is read from the same column but a different row and

that the latter depends on the IterationStep of the LifeCycle component.
LUMASS successively evaluates nested parameter expressions from the inside to the outside to
generate the actual parameter value to be supplied to the model component. The dynamic
expression in this example evaluates to either 1 or 0 and specifies the

NumIterationsExpression property value of the aggregate component ShrinkWhite, a
child component of the LifeCycle aggregate component. Hence, it controls whether
ShrinkWhite is being executed as part of the actual iteration step of the LifeCycle
component or not.

16

Editing Model Parameters

Property values are specified using the Component Properties window (Fig. 1-7). Moving the
mouse pointer over the Property Value section of the window indicates the property type:

 bool (True or False)

 int (whole number; enumeration)

 PixelType (enumeration)

 QString (text)

 QStringList (list of texts)

 QList<QStringList> (list of lists of texts)

 QList<QList<QStringList> > (list of lists of lists of texts)

The bool, int, PixelType, and QString type properties can be edited by clicking into the
Value section of the Component Properties window to either change or select the
appropriate value for the given property respectively. The latter one can also be edited using the
parameter editor (Fig. 9, s. below) by clicking the … button at the left hand side of the inline editor
for QString type properties (Fig. 8).

Figure 8 Component Properties window: Inline editor for QString type properties

bool, int, PixelType, and QString type properties represent static single values, which
cannot change during an iteration sequence. However, properties of type QString may also be
specified using parameter expressions, which can be used to effectively circumvent this restriction.
Properties of type QStringList, QList<QStringList>, and

QList<QList<QStringList> > represent parameter lists representing parameter values of
increasing dimensionality. Whereas a QStringList comprises a single QString type property
value per iteration step, QList<QStringList> represents a list of property values supplied to
the model component each iteration step. Consequently QList<QList<QStringList> >
represents a table of values, which is supplied each iteration step to the model component. It is
important to point out that the actual parameter value, though encoded as QString type, may
actually represent a numeric value or in fact a string of characters (i.e. text). QString is only used
as a carrier, able to encode all different types of parameter values as well as representing complex
nested parameter expressions, which can be evaluated to an actual parameter value of any type.
Parameter lists are edited using the parameter editor (Fig. 9), which opens automatically when

clicking into the appropriate Value section of a parameter list property.

17

Figure 9 Parameter Editor

It facilitates the specification of parameter lists by providing

 context menu and drag & drop driven editing of lists and parameters (Fig. 9, left)

 syntax highlighting and auto-completion for editing parameter expressions (Fig. 9, middle)

 a preview evaluation of parameter expressions for the given model state (Fig. 9, right)

Note that the auto-completion and preview evaluation functionality of the parameter editor
depends on the referenced model components (and their underlying data) being available and
properly initiated.

Processing Pipeline
Apart from concatenating data objects and processing objects, processing pipelines offers two main
benefits:

Sequential processing of large images: The image(s) are split into smaller image regions, which are
then processed one by one and reassembled at the end of the pipeline (e.g. an ImageWriter
component).

Parallel processing: The parallel processing of individual image regions (s. sequential processing) in
individual threads. Whether a process component provides multi-threading or not depends on the
implemented algorithm. Most LUMASS process components support at least partial parallel
processing.

The above processing pipeline benefits are provided by the core libraries underpinning the
processing capabilities of the LUMASS modelling framework, i.e. Insight Toolkit (ITK) and Orefo
Toolbox (OTB). Please consult the ITK Software Guide (Johnson et al., 2016) for further information.

Model Component Reference
Table 2 provides an overview of the currently available model components within LUMASS (version

0.9.52).

https://itk.org/
https://www.orfeo-toolbox.org/
https://www.orfeo-toolbox.org/
http://www.itk.org/ItkSoftwareGuide.pdf

18

Table 2 Available model components

Component1 Function Inputs2 Outputs2

CastImagec,e,f Pixel data type conversion 0: Image of type T1 0: Image of type T2
CostDistanceBufferb Object buffer or cost-

distance surface around/to
defined objects (i.e. pixel
values)

Feature image (file
name);
cost image (file
name)

Buffer or cost
distance image
(file name)

DataBuffera,f In-memory image and/or
attribute table

0: Process
component output

0: Image and/or table

DataBufferReferencea,f Reference to DataBuffer N/A; references
DataBuffer by

UserID or
ComponentName

0: Image and/or table

ExternalExecb Execution of an external
non-interactive programme
or script

N/A N/A

ExtractBandc,f Extract an image band from
a multi-band image

0: Multi-band
image

0: Single band image

FocalDistanceWeightc,f Focal CA-based weighting
algorithm for calculating
land-use transition
potentials

0: Land-use image 0: Neighbourhood-
based influence
factor for calculating
land-use transition
potential

ImageReaderc,f Reads an image file from
disk or a rasdaman database
(3D) including its associated
RAT

Image (absolute file
name or rasdaman
image
specification)

0: Image and
associated RAT, if
available

ImageSorterb Sorts images based on the
first input image; also
produces an index image
containing the 1D unsorted
input pixel indices

List of input images
(file names)

Sorted images
written to disk
(indicated by _desc or
_asc); index image
(_idx) containing
unsorted 1D input
pixel indices

ImageWriterc,f Writes an image to disk or
into a rasdaman database
(3D)

0: input image and
RAT, if applicable

N/A

MapAlgebrac,f Pixelwise mathematical
operation on a set of input
images and attribute tables

0..(n-1): single
band image of type
T, where n equals
the number of
input images

0..(m-1): single band
image of type T,
where m equals the
number of
expressions supplied

MapKernelScript2c,f Script-based pixel
processing incl.
neighbourhood access (CA-
based modelling)

0..(n-1): single
band image of type
T, where n equals
the number of
input images

0: single band output
image
1: AuxData Table

ParameterTablea A visual and editable stand-
alone table in the model
view

N/A N/A

19

Component1 Function Inputs2 Outputs2

RandomImagec,f Creation of a range
constrained pseudo random
image from scratch

N/A 0: single band output
image

ResampleImagec,f Resamples an image using
different interpolation
methods

0: single band input
image

0: resampled single
band output image

SpatialOptimisationd,f Solves a spatial optimisation
problem on input’s RAT

0: input image with
associated RAT

0: output image with
associated RAT

SQLProcessorc,f Performs SQL processing on
input tables

0: input image
(with associated
RAT) or stand-
alone table, image
is passed through
as single output
1..(n-1): input
image or stand-
alone table

0: input image at
index 0

SummarizeZonesc,f Calculates a zonal statistic
of image 1 within the zones
of image 0

0: integer zone
image
1: value image

0: integer zone image
with RAT summary
statistic of input 1 (or,
if not available, input
0)

TableReaderd Reads a stand-alone *.csv,
*.xls or SQLite table from
disk; note: if *.csv or *.xls
files are supplied it creates
an associated SQLite
database (*.ldb) and table
and opens a connection to
the table

Input table (file
name)

0: stand-alone table
(suitable for SQL
processor)

TextLabela Rich text label component
for comments model
description

N/A N/A

UniqueCombinationc,f Identifies unique
combinations of input pixel
(raster union)

0..(n-1): categorical
input image

0: unique
combination index of
inputs with
associated RAT
showing original pixel
value per input layer

1
a: model component; b: stand-alone process component, cannot be incorporated in pipeline; c: streamable process

component; d: non-streamable process component; e: multi-band support; f: 3D support (experimental)
2 Inputs and outputs are prepended by their 0-based index position they have to be provided at (input) or can be accessed

at (output) (e.g. MapAlgebra:0 refers to the first output and MapAlgebra:1 to the second output of the

MapAlgebra component respectively)
RAT: raster attribute table

Please note that the description of component properties in the following sections only refers to the
actual type of the parameter value that is supplied to the component during an individual iteration
step.

20

ExternalExec

Overview

ExternalExec enables the execution of any non-interactive programme or script installed on the
computer running LUMASS or the LUMASS engine. LUMASS executes the specified Command and
continues its internal processing workflow after the execution of the external programme or script
has finished.

Properties

Command (QStringList): Operating system specific command (text) including any command-line
arguments to execute the external programme or script.

Arguments (QStringList): Do not use.

FocalDistanceWeight

Overview

This filter implements a focal weighting algorithm as described by White et al. (1997, p. 326). The

central pixel of a circular neighbourhood of radius r is weighted according to the occurrence of
certain pixel values within defined distance classes.

Distance Classes

The number of distance classes n is defined by the radius of the neighbourhood and can be
calculated as follows (note: zero distance is not included):

n = ((r*r) / 2.0) + 0.5 (odd radii)

n = ((r*r) / 2.0) + 1.5 (even radii)

Weights Matrix

The weights for certain pixel values for each of the distance classes is provided by a m x n matrix
(Weights), where n (i.e. number of columns) equals the number of distance classes and m (i.e.
number of rows) equals the number of pixel values to take into account in the weighting procedure.

The Weights matrix needs to be ordered with classes representing increasing distance from left to
right. The indices of the rows for individual pixel values need to be provided as an accordingly
ordered array of values (i.e. Weights[i][0] represents the weight of pixel value Values[i] for
the smallest distance class).

Properties

RadiusList (QStringList): Radius (integer) of the focal neighbourhood in pixel.

Weights (QList<QList<QStringList> >): Matrix (table) of weights (float).

Values (QList<QStringList>): List of pixel values of NMInputComponentType type to
be accounted for in the weighting algorithm.

ImageReader

Overview

The ImageReader component reads images from files stored on a hard drive or from a rasdaman
database.

Reading Image Files from Disk

Image files may be stored in any image format that uses regular file names (e.g.
/home/images/myimage.img) and that is supported by the underlying GDAL library. Sub-
datasets, for example stored in a NETCDF file, cannot be directly read by LUMASS. However, they
may be extracted beforehand, for example, by using the ExternalExec component in
conjunction with the gdal_translate command-line application.

http://rasdaman.org/
http://gdal.org/
http://www.gdal.org/gdal_translate.html

21

Reading Images from a Rasdaman Database

To read an image from a rasdaman database, the RasConnector property needs to be set to
True. Furthermore, the user needs to have access to a rasdaman database instance and the rasgeo
client application for rasdaman needs to be setup. Rasdaman images are specified by their collection
name and, if applicable, by their unique object identifier (OID). Collection name and OID are

separated by a colon ‘:’, e.g. MyRasdamanCollection:3053. If the OID is omitted and the
given collection comprises more than one image, LUMASS interprets the images in the given
collection as a multi-band image.

Reading Raster Attribute Tables (RAT)

If the given image has an associated raster attribute table (RAT), LUMASS automatically reads it

together with the image. ImageReader provides the RAT in one of two different modes, i.e. a
simple in-memory table (ATTABLE_TYPE_RAM), or as a SQLite database table
(ATTABLE_TYPE_SQLITE) (s. property RATType). In the latter case, the table name inside the
SQLite database is based on the image file’s base name. For example the RAT name inside a SQLite
database for the image C:/temp/myimage.img would be myimage_1, where the ‘_1’
represents the band number of the image. However, LUMASS currently only supports fetching the
RAT of the first band. The different types of tables provide different benefits for different purposes.
For example, a SQLite database table is required by the SQLProcessor component to perform
tree queries or create or join tables. Additionally, SQLite database tables don’t have to be kept in

main memory. In-memory tables (ATTABLE_TYPE_RAM), on the other hand, cannot be used for
SQL-based processing, but provide fast access to tabular data, e.g. to the MapAlgebra or the
MapKernelScript2 component respectively.

Properties

FileNames (QStringList): Input image file name (i.e. absolute file path or rasdaman image
specification).

RasConnector (bool): If set to True, the component expects to read from a rasdaman
database and FileNames to provide a rasdaman image specification rather than a disk-
based file name.

RATType (enumeration): Defines whether the image’s RAT, if applicable, is read into an in-
memory RAT (ATTABLE_TYPE_RAM) or a SQLite database table

(ATTABLE_TYPE_SQLITE).

RGBMode (bool): If set to True, the image’s internal pixel type is interpreted as ‘RGB’ and each
colour component is of type NMOutputComponentType. Note that this is not required to
read multi-band images in general, but only if another component requires the internal RGB
image pixel type (cf. Johnson et al. 2016, RGB Images).

BandList (QList<QStringList>): A list of 1-based (integer) band numbers. The parameter
may be left empty to read all bands of the image.

ImageWriter

Overview

The ImageWriter component writes images and an associated RAT to disk or into a rasdaman
database. Support for building overview (pyramid) layers is currently only available for disk-based
image files.

Writing an Image File to Disk

The ImageWriter uses the GDAL library to write images to the hard drive. Image file names have
to be specified as absolute file path.

http://rasdaman.org/wiki/RasgeoUserGuide
http://rasdaman.org/
http://gdal.org/

22

Writing an Image to a Rasdaman Database

To write an image into a rasdaman database, the RasConnector property needs to be set to
True. Furthermore, the current user needs to have access to the rasdaman database instance and
needs to have setup the rasgeo client application for rasdaman. To write a new image into a
rasdaman database, the user has to specify the collection name, the image is going to be stored in. If
the collection does not exist, it is created upon writing the image. If the collection already exists,
LUMASS adds a new image to the collection. If the collection name is specified together with a valid
OID, the specified image is going to be updated.

Properties

FileNames (QStringList): Disk-based storage: Absolute file path of the output image to be

created (or overwritten) on disk. Note that the file name extension, e.g. ‘.img’, defines the
GDAL-supported output image type. Database storage: Rasdaman image specification.

RasConnector (bool): If set to True, ImageWriter expects to write to a rasdaman
database and FileNames to provide a rasdaman image specification rather than a disk-
based file name.

InputTables (QStringList): The name of a component providing the RAT to be stored
together with this image. Note that if this parameter is specified, the WriteTable
parameter is ignored.

WriteImage (bool): Defines whether the actual image data is going to be written out. Setting this
property to False avoids unnecessary write operations, e.g. if only the RAT of an image is
being processed by the input component (e.g. SQLProcessor) and shall be written out.

WriteTable (bool): If the input image has an associated RAT, this property defines whether it is
written out together with the image or not. Note that this property is being ignored, if the
InputTables property is specified.

UpdateMode (bool): If set to True, the output image is opened in update mode, rather than
being overwritten. This mode is required when an input processing component performs a
global operation (i.e. all image data is required to be processed to provide a meaningful
output) and hence its output data is only valid after all pixel of the image have been
processed. For example, the zonal statistics table created by the SumZones component is
only provided after the processing of the input image is completed. Note that not all image file
formats support this mode. Double check the GDAL formats reference for information.

StreamingMethodType (enumeration): Defines how the input image is split for streamed

(i.e. sequential) processing. (TILED: set of rectangular regions; STRIPPED: set of rows)

StreamingSize (int): The maximum approximate memory usage (MB) (integer) of the pipeline
this writer is connected to.

PyramidResamplingType (enumeration): The resampling method used to build overview
(pyramid) layers. The option NONE writes or updates an image without creating overviews.

RGBMode (bool): If set to True, the writer interprets the internal image’s pixel type as ‘RGB’ and
the type of each colour component as NMInputComponentType. Note that this is not
required for writing multi-band images. However, it is required to write an input image with
RGB pixel type (cf. Johnson et al. 2016, RGB Images).

MapAlgebra

Overview

The MapAlgebra component performs a pixelwise mathematical operation on a series of input
images. All input images have to share the same physical space (i.e. origin, extent, and resolution)
and pixel type and must be single-band.

http://rasdaman.org/wiki/RasgeoUserGuide
http://gdal.org/
http://www.gdal.org/formats_list.html

23

Mathematical Expression

The mathematical operations supported by this component are defined by its underlying muparser
library. A list of its built-in functions and operators can be found here. In addition to these built-in
functions, LUMASS supports the following functions and constants:

rand(a,b): returns a uniform pseudo random integer number n in the range a <= n <= b
fmod(a, b): returns the remainder of a/b.

constants: e, log2e, log10e, ln2, ln10, pi, euler

Inside a mathematical expression, input images are referred to by the UserID of their associated
model component (e.g. ImageReader, ExtractBand, etc.). Attribute data is referred to by
concatenating the respective UserID and the table column name by a double underscore:

<UserID>__<column name>

For example, the extract majorcat MapAlgebra component in the
WriteMajorCatchmentFile component (Fig. 6, bottom left), uses the following expression to
extract the major catchment identifier from the input image (UserID: cat):

cat < 0 ? 0 : cat__MajorCatID

This expression sets all output pixel values to 0 if their respective input pixel value cat is smaller
than 0 (cat < 0). If the condition cat < 0 is false, it assigns the respective attribute table value

in column MajorCatID of input image cat to the output pixel. Please note that a MapAlgebra
expression does not support the muparser assignment operator. The given expression is evaluated
for each individual set of input pixel and its result is automatically assigned to the respective output
pixel. Note that expressions may also be nested and use brackets as shown in this example:

q < 1 ? (1 - 4 / (pi * sqrt(1 - q^2)) * atan(sqrt((1 - q) / (1

+ q)))) : q == 1 ? (1 - 2 / pi) : 1 - 2 / (pi * sqrt(q^2 - 1))

* ln((1 + sqrt((q-1)/(q+1))) / (1 - sqrt((q-1)/(q+1))))

Data Types and Type Casting

Every value used in a muparser expression as well as its return (i.e. output) value after evaluating an
expression, are internally represented by the data type double (i.e. a 64 bit floating point number).
Hence, any input data, e.g. tabular data, must be numeric. All non-numeric table columns of an input
RAT are not made available for usage inside a muparser expression. However, all numeric non-
double-typed input data are casted into a double type, which may involve data loss. Similarly,
the calculated output pixel value is casted into the NMInputComponentType type configured for

the MapAlgebra component. For output pixel values, MapAlgebra keeps track of overflows and
underflows as a result of incompatible data types and issues a warning in the LUMASS

Notifications window (View | Notifications).

Multiple Expressions

It is also possible to define more than one mathematical expression for each iteration step

(NumExpressions). In that case individual expressions must be separated by a comma ‘,’. It
means that more than one distinct output image can be produced by an instance of the given

MapAlgebra component. Each output image can be accessed by its respective output index,
defined as the expression number minus 1. For example, the result of expression 2 can be accessed
at output index 1 and the result of expression 5 can be accessed at index 4 etc. Note that although
all expressions are evaluated at the same time and each time the component is executed, only one
image is allocated at a time and populated with the appropriate output data of the requested output
image. Hence, the particular MapAlgebra component needs to be executed each time a different
output image is requested by a downstream component.

http://beltoforion.de/article.php?a=muparser
http://beltoforion.de/article.php?a=muparser&hl=en&p=features&s=idDef1#idDef1
http://www.cplusplus.com/reference/cmath/fmod/?kw=fmod

24

Properties

InputTables (QStringList): Deprecated – do not use. Note that his property is no longer
required, since LUMASS automatically fetches RATs associated with input images.

InputTableVarNames (QList<QList<QStringList> >): Deprecated – do not use.
Note that his property is no longer required, since LUMASS automatically detects the RAT
attributes used in the given mathematical expressions.

MapExpressions (QStringList): Mathematical expression to be performed on the input
images.

NumExpressions (QStringList): The number of comma separated expressions supplied per
iteration.

UseTableColumnCache (bool): If set to True, input RAT attributes are cached prior to the
execution of the filter. This option is useful to provide fast access to attribute values during
the pixelwise computation. Not that this option should be set to False for in-memory RATs
(ATTABLE_TYPE_RAM).

MapKernelScript2

Overview

This process component executes a small user-defined script to calculate individual output pixel

values. Depending on the configured neighbourhood size (Radius), individual pixel values in a user-
defined CIRCULAR or RECTANGULAR neighbourhood (KernelShape), may be accessed to
calculate the output pixel value of the centre pixel. Hence, MapKernelScript2 facilitates the
implementation of arbitrary focal operators, for example to calculate slope or shaded relief maps, or
to build cellular automata. The user-defined script represents a sequence of muparser-based

expressions (cf. MapAlgebra), completed by a semi-colon ';'. Additionally, users may use C-style
for loops for the repetitive evaluation of a sequence of mathematical expressions (General Kernel
Script Syntax).

Neighbourhood (Kernel Window)

MapKernelScript2 supports a different neighbourhood radius for each image dimension d. The
kernel window length len in pixel for each dimension is (Johnson et al., 2016, Neighborhood
Iterators)

len = 2 * radius(d) + 1

where radius(d) is the kernel radius in image dimension d. For example, a kernel radius of 1 for
a 2D image yields a 3x3 neighbourhood. Individual pixel values in the neighbourhood can be
accessed by their index position in the neighbourhood, which is numbered sequentially from left to
right and top to bottom (for a 2D image) starting with index 0:

0 1 2

3 4 5

6 7 8

Accessing Pixel Values

Input (image) pixel values are referenced by their respective image identifier, that is the UserID of
the particular input component, such as an ImageReader's UserID. If a kernel radius of greater
than zero is specified for any of the image dimensions, the input pixel values are accessed using the
kwinVal function

v = kwinVal(img, pixIdx, thid, addr);

where v represents the pixel value of input image img at neighbourhood index position pixIdx.

The thid and addr parameters are pre-defined constants and have to be supplied for technical

http://beltoforion.de/article.php?a=muparser

25

reason. For the convenience of the user, the index of the centre pixel is provided as pre-defined

constant centrePixIdx and saves the user from having to calculate it specifically for different

kernel sizes and shapes. Another convenience function is neigDist

h = neigDist(pixIdx, addr);

where h represents the distance in pixel from the centre pixel to the pixel indicated by the
neighbourhood index pixIdx. addr is a pre-defined constant and has to be supplied for technical
reasons.

Accessing Table Values

Table values are referenced by their 0-based column and row index in the table. For example the
value t, in column colIdx and row rowIdx of the table mytab can be retrieved with

t = tabVal(mytab, colIdx, rowIdx, addr);

where t represents the attribute table value in the (colIdx + 1)th column and (rowIdx + 1)th
row of table mytab. In this case mytab represents a stand-alone table and is the UserID of a

TableReader input component. In contrast to a stand-alone table, an input image's RAT is
referenced by the input component's UserID (e.g. img) extended by the suffix _t, i.e. img_t.
This is required to distinguish between the image pixel values and the values in its associated RAT
since each input component only has one UserID. Also note that similar to the kwinVal function,
the tabVal function also requires the pre-defined constant addr to be supplied as a function
parameter.

Referencing the Output Value

The variable name of the output pixel value is user-defined and has to be specified via property
OutputVarName.

General Kernel Script Syntax

A kernel script is made up of a set of variable assignments, e.g.

var = a + b;

The right hand side (i.e. right of the ‘=’ sign) is represented by a muparser expression, concluded by a
semi-colon ‘;’. See the section Mathematical Expression for a description of LUMASS supported
muparser expressions. If the left hand side (e.g. 'var = ') is missing, as common for the test
expression in a for-loop header (s. below), an implicit variable is assigned to it. The typing of
variables is implicit. Every variable is of type double (cf. Data Types and Type Casting). Variable

assignments have to be specified explicitly using the '=' sign. A side-effect assignment similar to the
C-style '++' or '--' operator is not supported. Also not support are the operators '+=', '-=', '/=', and

'*='. The following listing shows a simple sample script including a C-style for-loop.

size=10;

out=0;

b=5.7;

for (i=1; i < size; i = i+1)

{

b = b * i;

}

out=b;

http://beltoforion.de/article.php?a=muparser

26

A for loop may not be nested in a muparser expression, as for example

var = a < 0 ?

for (int myvar=0; myvar < numPix; myvar = myvar+1)

{

out=out+1;

}

: 0;

However, for loops itself may be nested, e.g.

for (i=0; i < number; i=i+1)

{

for (g=4; g >=0; g = g-1)

{

out = i*g;

}

}

and muparser expressions may be used in the loop header or body.

Reserved Names (Kernel Script Keywords)

The following list represents the reserved names within a kernel script. These names must not be
used for user variables:

numPix : Number of active pixel in the user-defined neighbourhood

centrePixIdx : 1D neighbourhood index of the centre pixel
addr : MapKernelScript2 instance identifier
thid : Thread identifier

kwinVal : Function to access neighbourhood values by 1D index
tabVal : Function to access table values by column and row index

neigDist : Function to access distance between centre pixel and user specified pixel

mathematical constants: e, log2e, log10e, ln2, ln10, pi, euler

Auxiliary Output Data

In addition to the computed output image MapKernelScript2 provides auxiliary output data to
enable feedback between pixel-level computations and model component control flow. After the
component has completed the computation of the output image, it creates a table with a simple
summary statistic for each explicitly and implicitly defined kernel script variable. The columns of the
table represent the individual variables and the rows of the table represent the summary statistics:
(in this order) i) minimum value, ii) maximum value, iii) mean value per image pixel, and iv) sum of
variable value across threads. Please note that the kernel script is executed for each individual pixel
and that each individual computational thread stores its own instance (and hence value) for each of
the explicitly and implicitly defined script variables. The summary statistic for the script variables is
calculated over the thread specific values for each variable after the whole image has been
completely processed. Hence, the meaning of these summary statistics depends on how the
individual variables are used and updated during the pixelwise script execution. For example, one
use case could be the identification of the maximum image value, or counting how often a particular
pixel value (state) has been changed from one value to another value over the whole image.

Properties

Radius (QList<QStringList>): A list of integer values specifying the neighbourhood (i.e.
kernel) size for each dimension of the image. Hence, the length of the list equals the number
of dimensions of the input image.

KernelScript (QStringList): The kernel script to be executed to calculate individual
output pixel values.

27

InitScript (QStringList): An optional initialisation script, which is executed once before the
output pixel values are calculated. Note that this is suitable to initiate global counting
variables or to calculate constant parameters that can then be accessed in the pixelwise
computation.

KernelShape (enumeration): If a kernel radius of greater than 0 is specified, this property
defines the shape of the neighbourhood.

OutputVarName (QStringList): Variable name for the output pixel value.

Nodata (QStringList): Defines the value to be assigned to the output pixel value for a non-
neighbourhood-based map script in case of an overflow or underflow result value. (Note that
this behaviour is to be extended to neighbourhood-based computations.)

NumThreads (int): Sets the maximum number of threads to be used by this component for
parallel processing.

SQLProcessor

Overview

The SQLProcessor enables SQL processing on SQLite database tables. Potential input

components, which may provide SQLite-based RAT or stand-alone tables are ImageReader (s.

RATType), TableReader, and DataBuffer or DataBufferReference respectively. The

component may be incorporated into an image processing pipeline, as long as its first input (at index

0) represents an image with an associated RAT. This image and its RAT is passed on as the only

output (at output index 0). Streaming may occur depending on the downstream components. For

example, if an ImageWriter is the only downstream component and its WriteImage property is

set to false, streaming is omitted and the output table is directly passed on to the writer.

Properties

SQLStatement (QStringList): The SQL statement to be executed on the input table(s).

Important Model Development Guidelines
 Execution order flows from higher to lower time levels and from higher aggregation levels to

lower aggregation levels (or from the outside to the inside).

 Processing pipelines

o Processing components linked into the same processing pipeline and sharing the same host
component have to sit on the same time level to ensure proper initialisation.

o A processing pipeline may reach across aggregate component boundaries as long as all of
its components only contribute input data to down-stream components, i.e. components
that are positioned on a lower level in the model hierarchy.

 Repetitive execution of model components is controlled via the NumIterations or
NumIterationsExpression property of an aggregate component.

 Conditional execution of model components is realised via the

NumIterationsExpression property of aggregate components.

 The input and output properties dimension, data type, and number of bands need to be defined
explicitly for each individual process component.

 Watch the Notifications window for warnings and error messages to help you debug and
test your model.

28

How to create a simple processing pipeline
0. Start LUMASS and select Model View Mode from the View menu (View | Model View

Mode). This displays the Table Objects, Model Components, and Component

Properties display areas and collapses the mapping related display areas.

1. Add a process component to the model: Select the ImageReader entry in the Model
Components list and drag it into the Model View.

2. Add the ImageWriter component to the Model View using drag and drop.

Note: If none of the tools in the tool bar is selected (cf. Fig. 2-1 to 2-5 and 2-7), you can reposition the
individual components using the mouse. Clicking with the left mouse button on a component shows
its properties in the Component Properties window. A process component comprises the
general model component properties (at the top) and the set of general process component
properties at the bottom (below the ProcessName property). Refer to Table 1 for a short
description of the general component properties. Please note that each process component has an
additional set of properties, which define process specific parameters, such as file names.

3. Link the process components:
a. Select the Link Components tool (Fig. 2-7) from the tool bar.
b. Left click on the ImageReader component and hold the left mouse button down.

c. Move the mouse pointer onto the ImageWriter component and release the left mouse
button.

d. Deselect the Link Components tool.

Note: Always link components starting at the source (output) and ending at the target (input). Click

on the ImageWriter component and inspect its Inputs property. The ImageReader

Component is now listed as an input component to the ImageWriter.

4. Define/double check the components’ properties: For the error-free execution of the
processing pipeline, it is important to double check the components’ properties.

Note: An important concept of the modelling framework is that it requires an image’s data type,
dimension, and number of bands (image characteristics) to be explicitly specified. Furthermore, the
image characteristics of an output image have to match the image characteristics of an associated
input image. If these characteristics do not match, the pipeline will not execute properly and produce
an error. For model components, which don’t have a different input and output type, such as reader
and writer components, define the input and output components identically.

a. Define the input file name: Use your filesystem browser to navigate to
SampleData/data folder. Select the image file LUMASS_icon_2048.kea and drag it
onto the ImageReader Component. This adds the absolute file name to the FileNames
property of the ImageReader component.

b. Define the ImageReader’s image properties: Apply the following settings to the

component’s corresponding input and output properties:

ComponentType: uchar

NumBands: 4

c. Define the output file name: Click on the ImageWriter to display its properties in the

Component Properties window. Click on its FileNames property to open the
parameter editor (Fig. 9). Point into the left hand area of the dialog below the text
#Iteration. From the context menu (right mouse click) select Insert parameter
here. This inserts an editable file name parameter into the parameter list. To facilitate
editing the output file name, drag the input file, as defined for the ImageReader, into the
Edit parameter window. This inserts the file’s absolute file name into the editor
window. Delete the leading sequence of characters (‘file:///’) and change the image file

29

name to output_exercise1.img. Click the Apply button to transfer the parameter to

the component’s FileNames property.

Note: LUMASS uses a forward slash ‘/’ as path separator independent of the operating system.
Furthermore, the ImageWriter component recognises the output image format from the defined
file name suffix. Hence, this pipeline can be used to convert images between different formats as long
as they are supported by the underlying GDAL library.

d. Define the ImageWriter’s image properties: Apply the following settings to the
component’s corresponding input and output properties:

ComponentType: uchar

NumBands: 4

5. Save the pipeline as LUMASS model: Select the ImageReader and ImageWriter components by
holding the CTRL key and a left mouse click on each component. Now point the mouse on one of
the components and right click with the mouse to open the context menu. Select Save 2
Components As … Select a file name and folder for the model file and save the model.

Note: LUMASS models are comprised of two different files differentiated by their file name suffix. The
*.lmx file saves the actual model as XML representation, whereas the *.lmv file stores binary version

of the the visual representation displayed in the Model View. While saving or reading a LUMASS
model file, only one file needs to be explicitly specified. The corresponding other file is read/saved
automatically by LUMASS. To execute a LUMASS model with the lumassengine commandline
application, only the *.lmx version of the file is required. However, to edit the file in the LUMASS user
interface, both files need to be available.

6. Display the Notifications window: Select the Notifications option from the View

menu to open the Notifications window. It displays information, warnings, and error
messages occurring during a model run.

7. Execute the model: To execute the model either click on the Execute Model button on the
tool bar (Fig. 2-10) or open the context menu of the ImageWriter component and select

Execute ImageWriter. If the notifications window does not show any error messages, you
should find a newly created image file at its specified output location.

LUMASS Engine
The LUMASS software comprises two applications (executables), a desktop application including a
graphical user interface (Fig. 1) and a command-line application, i.e. the lumassengine. Whereas the
former application is meant for model development and viewing results, the latter application is
solely meant for running either separate spatial optimisation scenarios, or LUMASS models (Spatial
System Dynamics Modelling Framework):

LUMASS (lumassengine) 0.9.52

Usage: lumassengine --moso <settings file (*.los)> | --model <LUMASS

model file (*.lmx)> [--logfile <file name>]

The lumassengine enables the execution of LUMASS models in compute cluster or server
environments.

http://gdal.org/

30

References
Johnson HJ, McCormick MM, Ibanez L, Insight Software Consortium, 2016. The ITK Softeware Guide

Book 1: Introduction and Development Guidelines, Fourth Edition, Updated for ITK version 4.9.

http://www.itk.org/ItkSoftwareGuide.pdf

Neuwirth C, Peck A, Simonovic SP 2015. Modeling structural change in spatial system dynamics: A

DaisyWorld example. Environmental Modelling & Software 65: 30—40.

Watson AJ, Lovelock JE 1983. Biological homeostasis of the global environment: the parable of

DaisyWorld. Tellus B 35(4): 284—289.

White R, Engelen G, Uljee I 1997. The use of constrained cellular automata for high-resolution

modelling of urban land-use dynamics. Environment and planning 24(3): 323—343.

http://www.itk.org/ItkSoftwareGuide.pdf

	Licence
	Acknowledgement
	Disclaimer
	Contents
	What is LUMASS?
	Graphical User Interface (GUI)
	Map display
	Layer types
	Data formats
	How to map raster layer values
	How to map raster layer attributes

	Tables
	Attribute Tables
	Stand-Alone Tables

	Spatial System Dynamics Modelling Framework
	Model Structure
	Properties and Parameters
	Parameter
	Property

	Control Flow
	Execution Sequence
	Looping and Branching

	Dynamic Model Parameters
	Parameter Lists
	Parameter Expressions
	Notation
	Examples
	Example 1 (ComponentName: ImageReader1, UserID: landscape, Property: FileNames)
	Example 2 (ComponentName: ImageWriter2, UserID: N/A, Property: FileNames)
	Example 3 (ComponentName: AggrComp2, UserID: ShrinkWhite, Property: NumIterationsExpression)

	Editing Model Parameters

	Processing Pipeline
	Model Component Reference
	ExternalExec
	Overview
	Properties

	FocalDistanceWeight
	Overview
	Distance Classes
	Weights Matrix
	Properties

	ImageReader
	Overview
	Reading Image Files from Disk
	Reading Images from a Rasdaman Database
	Reading Raster Attribute Tables (RAT)
	Properties

	ImageWriter
	Overview
	Writing an Image File to Disk
	Writing an Image to a Rasdaman Database
	Properties

	MapAlgebra
	Overview
	Mathematical Expression
	Data Types and Type Casting
	Multiple Expressions
	Properties

	MapKernelScript2
	Overview
	Neighbourhood (Kernel Window)
	Accessing Pixel Values
	Accessing Table Values
	Referencing the Output Value
	General Kernel Script Syntax
	Reserved Names (Kernel Script Keywords)
	Auxiliary Output Data
	Properties

	SQLProcessor
	Overview
	Properties

	Important Model Development Guidelines
	How to create a simple processing pipeline

	LUMASS Engine
	References

